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Abstract. We provide an overview of research related to environmental effects of disposal of coal
combustion residues (CCR) in sites in the United States. Our focus is on aspects of CCR that have the
potential to negatively influence aquatic organisms and the health of aquatic ecosystems. We identify
major issues of concern, as well as areas in need of further investigation.

Intentional or accidental release of CCR into aquatic systems has generally been associated with
deleterious environmental effects. A large number of metals and trace elements are present in CCR,
some of which are rapidly accumulated to high concentrations by aquatic organisms. Moreover,
a variety of biological responses have been observed in organisms following exposure to and ac-
cumulation of CCR-related contaminants. In some vertebrates and invertebrates, CCR exposure
has led to numerous histopathological, behavioral, and physiological (reproductive, energetic, and
endocrinological) effects. Fish kills and extirpation of some fish species have been associated with
CCR release, as have indirect effects on survival and growth of aquatic animals mediated by changes
in resource abundance or quality. Recovery of CCR-impacted sites can be extremely slow due to
continued cycling of contaminants within the system, even in sites that only received CCR effluents
for short periods of time.

The literature synthesis reveals important considerations for future investigations of CCR-impact-
ed sites. Many studies have examined biological responses to CCR with respect to Se concentrations
and accumulation because of teratogenic and reproductively toxic effects known to be associated
with this element. However, the complex mixture of metals and trace elements characteristic of
CCR suggests that biological assessments of many CCR-contaminated habitats should examine a
variety of inorganic compounds in sediments, water, and tissues before causation can be linked
to individual CCR components. Most evaluations of effects of CCR in aquatic environments have
focused on lentic systems and the populations of animals occupying them. Much less is known about
CCR effects in lotic systems, in which the contaminants may be transported downstream, diluted
or concentrated in downstream areas, and accumulated by more transient species. Although some
research has examined accumulation and effects of contaminants on terrestrial and avian species
that visit CCR-impacted aquatic sites, more extensive research is also needed in this area. Effects
in terrestrial or semiaquatic species range from accumulation and maternal transfer of elements to
complete recruitment failure, suggesting that CCR effects need to be examined both within and
outside of the aquatic habitats into which CCR is released. Requiring special attention are waterfowl
and amphibians that use CCR-contaminated sites during specific seasons or life stages and are highly
dependent on aquatic habitat quality during those periods.

* Contribution 3558-CBL from the Chesapeake Biological Laboratory.
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Whether accidentally discharged into natural aquatic systems or present in impoundments that at-
tract wildlife, CCR appears to present significant risks to aquatic and semiaquatic organisms. Effects
may be as subtle as changes in physiology or as drastic as extirpation of entire populations. When
examined as a whole, research on responses of aquatic organisms to CCR suggests that reducing the
use of disposal methods that include an aquatic slurry phase may alleviate some environmental risks
associated with the waste products.

Keywords: accumulation, aquatic animals, coal ash, electric power, energy, heavy metals, sublethal
effects, trace elements

1. Introduction

Coal is widely recognized as a fuel source associated with substantial environ-
mental impacts. Mining, transport, and storage of coal are associated with habitat
degradation and environmental pollution (Dvorak et al., 1977). Large-scale, in-
dustrial combustion of coal produces both air-borne and solid wastes, the former
having been under stringent regulation by federal and state governments for several
decades. In contrast, solid coal combustion residues (hereafter CCR) which ac-
count for 90% of fossil fuel combustion wastes in the U.S. (USEPA, 1988) remain
only under state regulation, which varies in rigor by jurisdiction. In some states,
basic environmental protection standards for CCR disposal sites such as use of
groundwater monitoring programs, leachate collection systems, and impermeable
impoundment liners are not required. For example, in a national survey of 259 coal
utilities having greater than 100 megawatt capacity, nearly 40% reported operating
under no standards for groundwater quality (EPRI, 1997).

Federal regulations on CCR disposal remain in exemption following the 1980
Bevill Amendment to the Resource Conservation and Recovery ACT (RCRA;
USEPA, 1988). The rationale for the amendment to RCRA was that: 1) the wastes
were produced in large volumes, 2) there was little information available on charac-
teristics and environmental behavior of the wastes, and 3) the limited data available
suggested that risks posed by the wastes were low (EPRI, 1997). However, research
conducted in the past two decades has revealed that CCR is a chemically complex
mixture that can pose substantial risks to the environment. In particular, mounting
evidence suggests that disposal of CCR in natural and man-made aquatic systems
results in environmental degradation and poses health risks to wildlife. The goal of
this paper is to review the literature related to environmental risks posed by aquatic
disposal of CCR and to make recommendations for future research. Our purpose
is not to provide a thorough review of CCR disposal technologies, or chemical and
physical properties of CCR. Treatments of these and related issues are available in
the literature (Adriano ef al., 1980; Roy et al., 1981; EPRI, 1987a and b; Bignoli,
1989; Sharma et al., 1989; Eary et al., 1990; Mattigod et al., 1990; Carlson and
Adriano, 1993; Prasad et al., 1996). However, to provide general background on
CCR, we provide a brief a summary below.
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Figure 1. Net electricity generation in the U.S. by fuel source, 1999 (USDOE, 2000).

The organization of the main body of this review follows a typical risk assess-
ment format, beginning with a discussion of sources of exposure to organisms and
leading to discussions of accumulation, lethal and sublethal effects on individu-
als, and ecological (population and community-level) effects. While the tables are
meant to provide exhaustive references to pertinent studies as well as provide data
in support of the text, not all studies listed in tables are specifically discussed in
the text. Rather, the text provides overviews of specific topic areas with reference
to information in the tables when necessary. Because several systems have been
particularly well-studied with respect to accumulation and/or effects, we include
brief case studies based upon these systems within appropriate topic areas. Tables
specifically related to the case studies are presented in the Appendix. Throughout
the text and tables we refer to study organisms by the common or group names used
by the original authors. Scientific names of all organisms discussed are provided in
Appendix Table I.

2. Production and Disposal of CCR in the U.S.

With a growing human population, electricity demands continue to increase. Al-
though an increased reliance on other energy sources in the U.S. in recent decades
has resulted in a slight decrease in dependence on coal (USDOE, 1999), the largest
portion of electric utility capability in the U.S. remains fueled by coal (Figure 1;
USDOE, 2000). Reliance on coal for power generation has resulted in a concom-
itant rise in high- and low-volume waste production, with fly ash being the largest
component (see below and Table I). Technologies used to reduce airborne emission
of harmful particulates such as fly ash have resulted in large volumes of these
wastes being removed from exhaust stacks and the subsequent need for disposal
of the particulate materials. Production of fly ash, which makes up approximately
60% of the CCR waste stream, has increased in the U.S. from about 24 million
tonne in 1970 to nearly 57 million tonne in 1998 (EPRI, 1997; EPA, 1997; ACAA,
1998; Figure 2).
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Figure 2. Estimated annual production of fly ash in the U.S., 1970 to 1998 (EPRI, 1997; USEPA,
1997; ACAA, 1998).

Because enormous quantities of wastes are produced from coal combustion,
there has been a need for economically efficient disposal systems. An economically-
attractive disposal method has been aquatic disposal, which is less labor intensive
than land-or mine-filling (Carlson and Adriano, 1993). Typically, aquatic disposal
of CCR involves pumping slurried wastes from the production site to constructed
basins that, in many cases, ultimately discharge into natural water bodies. Aquatic
basins serve as a physical treatment, relying on gravitational settling of particulate
material from the slurried waste stream. Approximately 45% of coal-fired power
plants rely on aquatic basins for disposal of CCR (EPRI, 1997). In terms of volume
disposed, approximately two-thirds of CCR was disposed of using aquatic basins
prior to 1980 (EPRI, 1997). Today, aquatic basins still account for disposal of
approximately one-third of CCR produced (EPRI, 1997; Figure 3).

3. Composition of CCR

The composition of CCR can be quite variable (Tables I and II), reflecting differ-
ences in parent coal composition (Dvorak, 1977, 1978), inclusion of other fuels
in the combustion processes, combustion and cleaning technology, and disposal
techniques (Carlson and Adriano, 1993). Because coal is itself a concentrated
source of many trace elements, oxidation and loss of carbon from the solid substrate
during combustion produces a residual ash material that is further concentrated in
non-volatile elements. Addition of materials collected from boiler flues and air
scrubbing units to the bulk CCR stream can return volatile components to the CCR
stream which would otherwise have been lost during combustion. Moreover, waste
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Figure 3. Percentage of CCR disposed of in landfills, aquatic basins, and minefills in the U.S. (EPRI,
1997).

management practices vary among facilities, and may entail combining numerous
waste products associated with coal combustion and typical plant operations into a
single, chemically complex CCR effluent. Depending upon the site in question, the
CCR stream can thus contain a variety of waste types, including fly ash (typically
the largest component), bottom ash, flue gas desulfurization (FGD) wastes, fluid-
ized bed boiler (FBB) wastes, coal gasification ash (CGA), and multiple types of
low volume comanaged wastes (EPRI, 1997). The result of modern, industrial coal
combustion practices is thus a solid CCR waste enriched in numerous elements and
compounds, some of which may pose risks of toxicity to organisms that interact
with the wastes in natural or man-made habitats (Tables I and II). Of the three
commonly employed disposal techniques (landfills, aquatic basins, and minefills),
comanagement of multiple waste types is most prevalent at facilities using aquatic
basins for disposal. In a survey of 259 disposal facilities, 91% of sites using aquatic
basins simultaneously disposed of high and low volume waste types, whereas 70
and 75% of landfills and minefills, respectively, received the mixed effluents (EPRI,
1997).

The largest proportion of CCR is in the form of solids such as ash (USEPA,
1988) that contain a variety of potentially toxic elements and compounds (Tables
I and II). Thus, from the standpoint of potential environmental impacts associated
with CCR, the solid ash fraction appears to be a component of CCR that requires
particular attention. The emphasis of this paper will be on environmental impacts of
solid CCR in aquatic environments, with a primary focus on effects on aquatic or-
ganisms. Moreover, we will focus on inorganic contaminants associated with CCR
disposal in aquatic systems which appear to be much more prevalent than organic
contaminants (Table II), and thus have received greater attention from researchers.
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4. Environmental Impacts of CCR in Aquatic Systems

4.1. EXPOSURE TO CONTAMINANTS

4.1.1. Sources of Contaminants to Biota

Disposal of CCR into aquatic systems can physically and chemically alter habitat
conditions via sedimentation and changes to sediment particle size distribution,
turbidity, pH, conductivity, and inputs of contaminants (Theis, 1975; Carlson and
Adriano, 1993; Dvorak 1977, 1978). Numerous aquatic systems have been studied
with respect to these habitat modifications, the focus primarily being on inor-
ganic contaminants associated with CCR. Concentrations of several trace elements
(primarily As, Cd, Cr, Cu, Pb, and Se) have been particularly well characterized
in several CCR-impacted systems because of the abundance of these elements in
CCR and/or concerns associated with the known toxicological actions of these ele-
ments. Whereas in some systems the focus of chemical screening was primarily on
dissolved fractions of one or a few trace elements in water, surveys in other systems
suggest that numerous trace elements are elevated in CCR-impacted systems not
only in water, but also in suspended solids and sediments (Table III).

The results of chemical surveys presented in Table III reflect the elevated con-
centrations of contaminants associated with CCR in dissolved and particle-associa-
ted forms. However, to examine the potential risks that elevated CCR-derived con-
taminants in aquatic systems may pose for wildlife, the propensity for contaminants
to be accumulated from the environment must be examined, as must the biological
responses associated with contaminant accumulation. These topics are treated in
the following sections of this document.

4.1.2. Trace Element Accumulation by Biota

There is a large amount of data demonstrating that plants and animals inhabiting
CCR-contaminated sites or chronically exposed to CCR in laboratory or field-
based experiments accumulate trace elements, sometimes to very high concen-
trations (Table IV). Accumulation of trace elements from water and sediments
by vascular and non-vascular plants suggests the potential for trophic transfer of
bioaccumulative elements to grazers. For example, in the D-Area facility, SC,
numerous types of producers accumulated trace elements from sediments and/or
water, themselves apparently serving as vectors of the contaminants to several graz-
ing invertebrates (Table IV; Cherry and Guthrie, 1976, 1977; Guthrie and Cherry,
1979). Occurrence of some trace elements at very high concentrations in micro-
and macroinvertebrates also suggests that predatory vertebrates may accumulate
some trace elements to levels that may ultimately result in lethal or sublethal effects
(Hopkins, 2001). In Stingy Run, OH, high tissue burdens of some contaminants
in odonates may have been a source of contaminants to several species of fish
which accumulated trace elements in numerous tissues (Table IV; Lohner and
Reash, 1999; Reash et al., 1999). Such relationships between tissue trace element
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concentrations in fish and accumulation by invertebrate prey species were apparent
in several systems in which biotic samples were surveyed (Table IV). Note that
some authors have reported body burdens in concentrations per unit wet mass,
whereas others have reported concentrations relative to dry mass. We indicate in
the tables the different ways in which concentrations were presented by the original
authors.

The importance of trophic vectors for trace element accumulation by vertebrates
in CCR-contaminated systems was demonstrated by a recent series of experiments
on the lake chubsucker, a benthic fish. Exposure to CCR-contaminated sediments
alone (with uncontaminated water and food provided) resulted in rapid accumula-
tion of trace elements (Table IV; Hopkins et al., 2000b). When the same species
of fish was exposed to CCR under semi-natural mesocosms conditions (water,
sediments, and prey collected from the CCR disposal site), trace element accumu-
lation was much greater than in fish previously exposed to sediments alone (Table
IV; Hopkins, 2001), and effects on growth and survival were greatly exacerbated.
Trace element accumulation by invertebrates was likely the most important factor
influencing accumulation by fish, and led to body burdens in fish more than an
order of magnitude higher than burdens found in fish exposed to contaminated
sediments alone (i.e., provided with uncontaminated water and food; Table IV).

Amphibians, reptiles, birds, and mammals also accumulate contaminants from
CCR-contaminated sites as a result of their feeding niche/trophic status, and/or
long life spans which expose them to contaminants over exceptionally long periods
of time (Table IV). For example, the banded water snake is a relatively long-lived
predator with high trophic status (preying upon other vertebrates such as fish and
amphibians). Banded water snakes collected from a CCR-contaminated system
have the highest hepatic concentrations of Se and As yet reported in a reptile
(Table IV; Hopkins et al., 1999a). In addition, a series of laboratory studies with
the banded water snake demonstrated the importance of ingestion of contaminated
prey items in accumulation of contaminants. Adult and juvenile snakes were fed
contaminated prey items (fish) collected from a CCR-contaminated swamp (D-
area site, SC) for up to two years. Resulting accumulation was pronounced, with
particularly high concentrations of Se accumulating in liver, gonads, and kidney
(Table IV; Hopkins et al., 2001; Hopkins et al., 2002a). Concentrations of Se
greatly exceeded concentrations known to induce reproductive failure in birds and
fish (Lemly, 1993, 1996). Moreover, snakes fed alternating diets of contaminated
and uncontaminated prey (Hopkins et al., 2002a) also accumulated Se burdens
above the reproductive toxicity thresholds proposed by Lemly (1993, 1996). Res-
ults from these studies suggest that even periodic feeding on prey items derived
from CCR-contaminated sites can result in high tissue burdens in predatory verteb-
rates. Therefore, terrestrial vertebrates inhabiting nearby habitats could accumulate
trace elements from prey items dispersing from the contaminated sites, even if the
remaining portion of a predator’s diet consists of prey items with no history of
contaminant exposure.
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A particularly well-studied system with respect to trace element accumulation
in aquatic vertebrates as a result of CCR contamination is Hyco Reservoir, NC.
Investigators have examined several tissues in numerous species of fish to quantify
Se accumulation. Hyco Reservoir is thus examined more thoroughly in the case
study to follow.

4.1.3. A Case Study of Selenium Accumulation by Fish: Hyco Reservoir, NC
Hyco Reservoir is a 1764 ha cooling reservoir serving a 2495 MW coal-fired power
plant in Roxboro, North Carolina. As well as heated water discharge, the reservoir
also received effluents from coal fly ash basins (CPL, 1981). Fish declines and a
fish kill in autumn of 1980 (CPL, 1981) prompted several investigations to examine
coal-related contaminants and potential effects on the aquatic community within
the reservoir. Here we provide an overview of Se accumulation by fish in Hyco
Reservoir, because of the large number of species examined in that system. Bio-
logical responses to Se accumulation in Hyco Reservoir are presented elsewhere
in this document where sublethal and ecological effects of CCR are considered
(Sections 4.2 and 4.3).

Water chemistry surveys in Hyco Reservoir found that dissolved Se concen-
trations were quite high (Table III), whereas waterborne concentrations of other
CCR-derived trace elements did not appear to be elevated (CPL, 1981). Measure-
ments of organic contaminants (PAHs, PCBs, pesticides, herbicides) showed no
elevations above detection limits (CPL, 1981). Sampling of fish tissues revealed
similar patterns as did the water chemistry surveys: fish inhabiting Hyco Reser-
voir experienced significant tissue burdens of Se, while other trace elements (Hg,
As, Cu, Cr, Zn) were not elevated above normal (Appendix Table 1I; CPL, 1981).
Tissue levels of organic contaminants (PAHs, PCBs, pesticides, herbicides) were
below detection limits, except for DDD and DDE which were detectible but within
normal background concentrations (CPL, 1981). Because of the predominance of
Se in water and tissues, subsequent investigations of the Hyco system focused
primarily on Se accumulation and its effects on aquatic organisms (Appendix Table
1.

Selenium accumulation was observed in several trophic groups in Hyco Reser-
voir. Accumulation of Se by plankton may have been a source of Se accumulation
to planktivorous and ultimately higher-level predatory fish (Appendix Table II).
Selenium accumulation varied among fish species. Muscle Se concentrations were
generally highest for bluegill and several other sunfish, and lowest for catfish (Ap-
pendix Table II). Liver Se concentrations in bluegill collected from Hyco Reservoir
were about 50 times greater than liver concentrations in reference fish (Sager and
Cofield, 1984), and were considerably higher than liver Se concentrations of other
species (Appendix Table II). Gonadal Se concentrations also appeared higher for
bluegill sunfish than other species and there were sex-specific differences in Se
concentrations in gonads; ovarian Se concentrations were about twice the concen-
trations observed in testes (Appendix Table II; Sager and Cofield, 1984; Baumann
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and Gillespie, 1986). Moreover, bioaccumulation led to Se concentrations in ovar-
ies of bluegills about 1000 times above ambient water concentrations (Baumann
and Gillespie, 1986).

It is clear from studies to date that, when CCR is discharged into aquatic sys-
tems, some potentially toxic trace elements in water, sediments, and suspended
solids (Table III) are accumulated by biota and further transferred through the food
web (Table 1V; Appendix Table II). Biological responses resulting from exposure
and accumulation would thus be predicted. For example, the propensity for Se to
accumulate in fish from Hyco Reservoir, especially within ovarian tissues, suggests
that some species in this system may have been at risk of reproductive impairment.
Demonstrated lethal and sublethal responses of biota to CCR-derived contaminants
will be the subject of the following sections.

4.2. EFFECTS OF CCR ON INDIVIDUALS

4.2.1. Lethal Effects

Lethality of CCR to aquatic organisms has been observed in laboratory and field
studies (Table V). For example, comparative studies by Birge (1982) showed that
CCR effluent was acutely toxic to embryonic fish and amphibians in the laboratory
(Table V). Birge (1982) also conducted laboratory bioassays to examine relative
toxicities of 22 individual CCR-related elements to goldfish, rainbow trout, and
narrow-mouth toads. Based upon comparisons of 7 and 28 d LCs, values, narrow
mouth toads were found to be the most sensitive species to 17 of the elements (in
order of decreasing toxicity: Hg, Zn, Cr, Cu, Cd, As, Pb, Co, Ge, Al, Sn, Se, TI,
Sr, Sb, Mn, W), whereas rainbow trout were most sensitive to 5 elements (Ag, La,
Ni, V, Mo). Acute laboratory studies on other vertebrates and invertebrates have
also demonstrated lethality responses by several species when exposed to water,
sediments, or suspended solids from CCR-contaminated sites (Table V).

Field and outdoor mesocosm studies also suggest that for some species, acute
or chronic exposure to CCR can ultimately be lethal (Table V). For example, in a 5
d field-caging study, shrimp, darters, and salamanders were extremely sensitive
to conditions in a CCR-contaminated site, whereas other invertebrates and fish
experienced much lower mortality rates (Table V; Guthrie and Cherry, 1976). A
recent exposure of benthic fish in outdoor mesocosms for 45 days indicated that
prolonged exposures to CCR, as would occur in contaminated habitats, may result
in extremely high mortality (75%; Hopkins, 2001).

As a whole, results of field- and laboratory-based lethality studies (Table V)
suggest that, if lethality is to be used as an endpoint for examining ecological
risks of CCR, numerous species must be simultaneously examined due to extreme
species-specific differences in sensitivity. Particular attention should be devoted to
the duration and conditions of exposure; a recent study indicates that reductions
in resource abundance during chronic exposure to CCR increases the sensitivity of
fish to CCR (Hopkins et al., 2002a). Moreover, the absence of a lethal response by
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organisms in acute or chronic tests should not be interpreted as lack of significant
biological effects of CCR. Individuals of many species interacting with CCR in
natural and artificial systems have been shown to respond sublethally, often in ways
in which individual fitness may ultimately be compromised.

4.2.2. Sublethal Effects of CCR

Sublethal effects of CCR have been observed in numerous invertebrates and ver-
tebrates in sites in the U.S. (Table VI, Appendix Tables III and IV). Studies have
shown that several invertebrates experience changes in dispersal and metabolic pro-
cesses (Table VI). Fish have been shown to exhibit numerous sublethal responses
upon exposure to CCR and accumulation of trace elements. In Little Scary Creek,
WYV, a system receiving outflow from a CCR retention basin, bluegill sunfish ex-
perienced decreased liver weight and white blood cell counts, and elevated serum
levels of sodium, potassium, and chloride, although condition factors and general
morphology appeared normal (Table VI; Reash et al., 1999). Perhaps the most
frequently observed sublethal effects in fish exposed to CCR, however, are ab-
normalities in developing larvae and histopathological changes in adults. Bluegill
sunfish in Hyco Reservoir that were shown to accumulate Se in ovarian tissues
(Appendix Table II) produced edamatous larvae which eventually died (Table VI;
Gillespie and Baumann, 1986). Also in Belews Lake, NC and other systems, fish
have been observed to produce edamatous larvae, as well as to experience numer-
ous histopathological changes (Table VI). In some cases, abnormalities in larvae
were associated with reproductive failure and population declines (Section 4.3).
In one CCR-contaminated system in particular (Martin Creek, TX), thorough his-
topathological surveys have revealed widespread changes in native fish associated
with accumulation of Se. An overview of findings from histopathological studies in
the Martin Creek system is presented in the following case study. In a CCR disposal
site on the Savannah River Site, SC, numerous taxa have been shown to respond
sublethally to multiple trace elements accumulated from CCR-contaminated sed-
iments, water, and food. The Savannah River site is the subject of a second case
study regarding sublethal responses to CCR.

4.2.3. A Case Study of Selenium Accumulation from CCR and Sublethal
Responses by Fish: Martin Creek, TX

Martin Creek Reservoir is a 2000 ha cooling water reservoir used by a coal-fueled
power plant operated by the Texas Utilities Generating Co. The reservoir, con-
structed in 1974, is located on Martin Creek, Texas, a tributary of the Sabine River.
In September, 1978 the utility company began discharging effluents from two fly
ash settling ponds into the reservoir (Sorensen et al., 1982a). Shortly thereafter,
fish kills in the reservoir were observed (Garrett and Inman, 1984). In May, 1979,
approximately 8 months after effluent release had begun, discharge of the effluents
into Martin Creek Reservoir ceased. The Martin Creek site provided a unique op-
portunity to examine the magnitude of biological changes that can occur following
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a rather brief period of CCR inputs (8 mo), and the ensuing recovery period. In this
case study, we will focus on examinations of sublethal, histopathological changes
observed in fish in Martin Creek Reservoir. Population-level studies in this system
will be addressed in Section 4.3.

In 1977, one year prior to ash effluent discharges into the reservoir, fish sampling
efforts were initiated by the Texas Parks and Wildlife Department and sampling
recurred for three years after the discharge of coal ash effluents (1979-1981; Gar-
rett and Inman, 1984). During the same month that discharges began, dissolved
Se concentrations of Martin Creek Reservoir reached 2.2 to 2.7 ppm (Table III;
Garrett and Inman, 1984). Associated with Se in water were high tissue Se concen-
trations and a variety of histopathological abnormalities in fish (Table IV, Appendix
Table III). Livers of fish sampled from Martin Creek Reservoir in 1979 exhib-
ited a number of alterations typical of Se poisoning (Appendix Table III). Such
hepatic alterations included focal necrosis, granular cytoplasm, abnormally high
densities of Kupffer cells, and general disorganization of the hepatic architecture
(Sorensen et al., 1983a). Kidneys of green sunfish also showed necrotic cells in
the convoluted tubules, proliferative glomerulonephritis, and hematuria (Sorensen
et al., 1982a). Because of high concentrations of Se and observations that other
measured trace elements (Zn, Cu, Hg, Ag, Mg, Cr) were not elevated in tissues,
the authors concluded that Se was the likely cause for observed histopathological
changes (Sorensen et al., 1983a; Garrett and Inman, 1984).

Studies conducted in 1980 and 1981, two to three years after the discharge of
CCR effluent into Martin Creek Reservoir had ceased, revealed that histopatho-
logical changes persisted in numerous organs in sunfish. Although there were no
abnormalities found in stomach, spleen, gill, or heart of red ear sunfish, the kid-
neys, liver, and gonads were characterized by a number of abnormalities similar to
those previously reported for green sunfish (Sorensen et al., 1983b). Livers having
approximately 20 ppm Se (wet mass) were necrotic, displayed reductions in rough
endoplasmic reticulum and glycogen particles, and had increased densities of lyso-
somes (Sorensen et al., 1983b). Red ear sunfish also displayed proliferative glom-
erulonephritis in kidneys and hypertrophy of pancreatic tissue (Sorensen et al.,
1983b). Ovaries of several red ear sunfish exhibited an abnormally high incidence
of atretic follicles, but testicular abnormalities were not observed (Sorensen et al.,
1982b). Green sunfish exhibited similar abnormalities in liver, kidneys, and ovaries,
and additional abnormalities in myocardium and gills. Dramatic increases were
observed in inflammatory cells in cardiac tissue. Gills were heavily vacuolated and
had lamellae up to six-times thicker than those of reference fish (Sorensen et al.,
1982b).

Whereas the discharge of CCR effluents into Martin Creek Reservoir lasted only
about 8 months, recovery of the system took several years. One year following
effluent discharge, gizzard shad had muscle Se concentrations as high as 7.3 ppm
(wet mass), which declined to about 2.9 ppm by the third year after discharge
(Garrett and Inman, 1984). From 1978 to 1982, other species such as common carp
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and largemouth bass exhibited similar decreases in muscle Se concentrations (from
9.1 to 3.6 for carp and 8.3 to 3.8 ppm for bass; Garrett and Inman, 1984). However,
some species retained high tissue Se concentrations over time, despite the cessation
of CCR inputs to the system. For example, red ear sunfish sampled in 1986 (7
years after CCR input had ceased) still had hepatic Se concentrations of 7.6 ppm
wet mass, exhibited lower condition factors than reference fish, and continued to
exhibit histological alterations in the hepatic architecture similar to those observed
in earlier surveys (Appendix Table III; Sorensen, 1988). In addition, mature red
ear sunfish showed histopathological abnormalities in ovaries suggestive of overall
reproductive impairment. Sorensen (1988) concluded that overall health of red ear
sunfish in Martin Creek Reservoir remained poor, even 8 years following a brief (8
month) release of CCR into the system.

Studies of the fish assemblage in the Martin Creek system demonstrated severe
and widespread changes in tissue morphology which appeared to be primarily re-
lated to availability and accumulation of high concentrations of Se derived from
CCR inputs. However, the complex chemical nature of CCR suggests that in many
systems, a single contaminant such as Se may not be responsible for biological
changes (e.g. Tables II to IV). Rather, the combined effects of multiple accumulated
elements may lead to numerous changes in individuals that could compromise indi-
vidual fitness or health (Rowe et al., 2001c). The following case study summarizes
research conducted to examine sublethal responses of biota upon exposure to, and
accumulation of, multiple trace elements derived from CCR.

4.2.4. A Case Study of Accumulation of Numerous Trace Elements from CCR and
Sublethal Responses by Numerous Taxa: D-Area Facility, Savannah River
Site, SC
Perhaps the most studied site in the U.S. with respect to aquatic CCR is the dis-
posal system associated with the D-Area Power Facility on the U.S. Department of
Energy’s Savannah River Site near Aiken, South Carolina. Beginning in the 1970s
and continuing today, investigators have studied chemical, physical, and biological
features of the aquatic environments in the D-Area CCR disposal basins and down-
stream habitats. At the D-Area site a 70 MW, coal-fired power plant discharges
sluiced fly and bottom ash into a series of open settling basins. The configuration
of the system since the late 1970s has entailed use of two settling basins and a
drainage swamp. Sluiced ash is pumped into a receiving ditch which empties into
primary (15 ha) and secondary (6 ha) settling basins. A continuous flow of surface
water exits the secondary basin where it enters a 2 ha swamp. Discharge from
the swamp enters Beaver Dam Creek, a tributary of the nearby Savannah River.
Sediments throughout the disposal system are elevated in numerous CCR-related
trace elements (Table III). In addition to the elements presented in Table III, water,
sediments, and biota in the D-Area site have elevated concentrations of Al, Ba,
Fe, Hg, Mn, Sr, V, and Zn (Cherry et al., 1979a and b; Guthrie and Cherry 1979;
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Alberts et al., 1985; McCloskey and Newman 1995; McCloskey et al., 1995; Rowe
et al., 1996; Hopkins et al., 1998).

Plants and animals inhabiting the basins, drainage swamp, and Beaver Dam
Creek accumulate high concentrations of trace elements such as As, Cd, Cr, Cu,
and Se (Table IV). Particularly elevated in amphibians, reptiles, and invertebrates
are As and Se, considered to be among the most toxic trace elements to developing
organisms (e.g. amphibians; Herfenist et al., 1989). For example, larval bullfrogs
developing in D-area and those individuals that successfully metamorphosed and
dispersed from the site had whole body concentrations of As and Se that were 8-20
times the concentrations found in larvae from reference sites (Table IV; Rowe et al.,
1996; Hopkins et al., 1999a). Banded water snakes, which feed on contaminated
fish and amphibians in D-area, accumulated the highest tissue concentrations of As
and Se yet reported for a reptile (Table IV; Hopkins et al., 1999a). Moreover, accu-
mulation of trace elements was not limited to aquatic and semi-aquatic species. The
southern toad, a terrestrial amphibian that congregates at the contaminated aquatic
habitat seasonally for reproduction, has also been found to rapidly accumulate As
and Se from the polluted habitat (Table I'V; Hopkins et al., 1998).

While several studies have shown population-level changes in invertebrates in
the D-Area system (Section 4.3), several invertebrates have been examined for
specific sublethal effects of CCR exposure on physiology and growth. Grass shrimp
caged in situ in the D-Area settling basin for 8 mo experienced standard metabolic
rates 51% higher than shrimp caged in an unpolluted pond (Appendix Table IV).
Such increases in metabolic expenditures may reflect energetically costly processes
invoked in response to contaminant exposure and accumulation, and are predicted
to ultimately detract from portions of the energy budget associated with production
(e.g. energy storage, growth, or reproduction). The relationship between standard
metabolic costs and production was examined in another crustacean, a crayfish, ex-
posed chronically to CCR. Crayfish captured in D-Area had much higher standard
metabolic rates than did crayfish collected from an unpolluted site. Crayfish collec-
ted from unpolluted sites and exposed for 50 d to sediments and food collected from
D-Area also experienced initial increases in metabolic rate, and over the duration
of the experiment, suffered reduced growth rates compared to controls (Rowe et
al., 2001b; Appendix Table IV). Results from this laboratory study are consistent
with the prediction that CCR-derived elevations in metabolic expenditures may
ultimately be responsible for reductions in production processes such as growth.
Interestingly, the phenomenon of abnormally high metabolic rates in response to
chronic exposure to CCR in the D-Area site has been observed in two vertebrates
as well, suggesting that similar physiological responses to CCR are invoked by
several, taxonomically distant species (Appendix Table IV; Rowe et al., 2001b).

Several species of fish have been shown to accumulate contaminants from the
D-Area site (Table IV; Appendix Table IV). However, only the lake chubsucker
has been extensively examined with respect to sublethal changes in physiology or
performance (Appendix Table IV). Recent work on lake chubsuckers indicated that
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critical swimming speed (U,,;,;) and burst swimming speeds were greatly reduced
in fish experimentally exposed to CCR (Appendix Table IV). After 3 months of
exposure to CCR under conservative laboratory conditions, fish exposed to the con-
taminated sediments exhibited a 50% reduction in mean U, values (from 47.91 to
24.02 cm sec™!; Hopkins et al., 2003). Moreover, the typical relationship between
Uit and body mass was reversed in fish exposed to CCR. Instead of larger fish hav-
ing higher U, the smallest CCR-exposed fish actually performed best, suggesting
that exposure to CCR induced tradeoffs between growth and performance. Burst
swimming speeds were also affected by CCR exposure, with reductions becoming
exacerbated as sprint distance increased (Hopkins et al., 2003). Additional exper-
imental exposures of chubsuckers to CCR indicate that growth, fin morphology,
lipid storage, and metabolic rates can be adversely affected by CCR depending on
the duration and conditions of exposure (Hopkins et al., 2000, 2002b; Hopkins,
2001; Appendix Table IV).

Much research on sublethal responses of animals to CCR in the D-Area site has
been conducted on amphibians. Numerous sublethal effects have been reported
in amphibians inhabiting, or chronically exposed experimentally to, conditions
in the D-Area site, including changes in morphology, behavior, energetics, and
endocrinology (Appendix Table IV).

Studies conducted recently in the D-Area site have demonstrated frequent oc-
currence of morphological abnormalities in larval bullfrogs (Appendix Table IV).
Up to 96% of larval bullfrogs captured in D-Area exhibited abnormalities of the
oral structures, including absence of grazing teeth or entire tooth rows and ab-
normal morphology of labial papillae (Rowe et al., 1996). When embryos were
transplanted from a reference site into the D-Area settling basin and held for 80 d
post-hatching, over 97% of larvae expressed oral abnormalities, compared to less
than 1% in an unpolluted site (Rowe et al., 1998a). Oral abnormalities changed
the feeding ecology of the affected individuals, limiting their feeding niche and
subsequently reducing growth rate when heterogeneous sources of food were un-
available (Rowe et al., 1996). Axial malformations in the tail region (scoliosis)
have also been observed in larval bullfrogs in the D-Area site (Appendix Table
IV). Thirty seven percent of bullfrog larvae captured in D-Area exhibited scoliosis
of the tail, whereas such malformations were rare in nearby unpolluted reference
sites (< 3% overall; Hopkins et al., 2000a).

Abnormal swimming behaviors by larval bullfrogs have been observed in anim-
als captured from the D-Area site (Raimondo et al., 1998; Hopkins et al., 2000a). In
larval bullfrogs experiencing scoliosis, swimming speeds were reduced compared
to animals from the same site which lacked the spinal malformations (Hopkins
et al., 2000a). Moreover, larval bullfrogs from D-Area that did not have scoliosis
had decreased swimming speeds and were less responsive to physical stimuli when
compared to larvae from an unpolluted reference site (Raimondo et al., 1998).
In experimental mesocosms, larval bullfrogs from D-Area were more frequently
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preyed upon than were bullfrogs from an unpolluted site (Raimondo et al., 1998),
suggesting a relationship between altered swimming behaviors and predation risk.

Aberrant behaviors were also observed in adult southern toads exposed to coal
ash (Hopkins et al., 1997). Male southern toads inhabiting the margins of a coal ash
settling basin displayed breeding behaviors (vocalizations, posturing, selection of
conspicuous microhabitats) for over one month beyond the typical breeding period,
during which time females were unresponsive to male advertisements. These dis-
rupted breeding cycles, which coincided with modified circulating hormone levels
that regulate male reproductive behaviors (discussed below), were not observed in
other local populations of toads (see below; Hopkins et al., 1997).

Energetic changes similar to those observed in grass shrimp and crayfish were
also observed in larval bullfrogs in D-Area. Larval bullfrogs captured from D-Area
had metabolic rates from 30 to > 100% higher than did bullfrogs in uncontaminated
sites. A transplant experiment with embryos from different populations indicated
that increased metabolic rates were induced by environmental conditions in D-
Area, but were unrelated to the population from which embryos were derived (Ap-
pendix Table IV; Rowe et al., 1998b). As with crayfish which experienced reduced
production of tissue (i.e., growth rates) when metabolic rate was elevated (Rowe
et al., 2001b), bullfrogs from D-Area appear to have lower production of lipid
reserves at metamorphosis, perhaps a result of elevated metabolic expenditures due
to CCR exposure (Appendix Table IV; Rowe and Hopkins, unpublished). However,
controlled experimental work is required to verify the relationship between lipid
reserves and metabolic rates in D-Area bullfrogs.

In adult southern toads in D-Area, changes in endocrinological traits have been
observed. Adult male toads inhabiting the site exhibited increased circulating levels
of adrenal stress hormones and androgens (Hopkins et al., 1997). Circulating hor-
mone levels were elevated under seasonal and behavioral circumstances in which
hormones should have been at baseline levels, coinciding with aberrant calling
behaviors discussed previously. In addition, adult toads collected from a reference
site and transplanted to D-Area exhibited a pronounced adrenal stress response
(Hopkins et al., 1997; Hopkins et al., 1999b). Toads chronically exposed to CCR
in D-Area were less efficient at responding hormonally to direct additional stim-
ulus of the corticosteroid producing axis (Hopkins et al., 1999b). The observed
inability to respond to the stimulus indicates that the normal stress response might
be disrupted and that appropriate responses to additional environmental stressors
may be impaired (Hontela, 1998).

Although much research in the D-Area site has focused on sublethal responses
of animals to CCR, lethality has also been observed, reflecting either direct toxicity
of CCR to the study species, or indirect effects that led to mortality via CCR effects
on resources. Southern toads transplanted as embryos into the D-Area site and
an unpolluted area had no differences in survival through the embryonic period;
yet exposure to coal ash during the ensuing larval period resulted in mortality of
100% of study organisms prior to metamorphosis (Table VII; Rowe et al., 2001a).
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Larval mortality was associated with extremely low resource abundance in D-Area,
and very high trace element concentrations in available resources. It thus appears
that effects of CCR on D-Area toads probably reflected a combination of direct
toxic action and limitation of resources (Rowe et al., 2001a). Moreover, the low
recruitment of toads in D-Area suggests that the adult breeding population is made
up of immigrants from nearby uncontaminated sites. In such a way, this CCR-
contaminated site may act as a population sink, attracting migrants from nearby
populations that use the site for breeding, resulting in reproductive failure (Rowe
et al., 2001a).

Reptiles and birds in D-Area have also been examined for sublethal effects or
maternal transfer of CCR-derived contaminants to offspring. Banded water snakes
captured from the D-Area drainage swamp had higher standard metabolic rates
and hepatic trace element concentrations than did snakes capture in uncontamin-
ated sites (Appendix Table IV; Hopkins et al., 1999a). Laboratory feeding studies
confirm that snakes from the D-area site accumulate much of their trace element
burdens from dietary sources. Snakes fed fish collected from D-area for 1-2 years
accumulated significant quantities of As, Cd, Se, Sr, and V in target organs (liver,
kidneys, and gonads; Hopkins et al., 2001, 2002a). However, trace element con-
centrations were much lower in laboratory-exposed snakes compared to snakes
collected from D-area, suggesting that longer periods of exposure and/or other
routes of exposure are encountered by snakes under natural conditions (Hopkins
et al., 1999a, 2001, 2002a). Although snakes with lower body burdens of trace
elements did not exhibit changes in metabolic rates, approximately one third of the
snakes experienced significant tissue damage. Liver fibrosis was the most prevalent
pathology, involving proliferation of collagen fibers that resulted in narrowing or
occlusion of sinusoids and increasing the mass of the intersinusoidal parenchyma
(Rania and Hopkins, unpublished).

Turtle, alligators, and birds inhabiting the vicinity of the D-Area basins and
drainage swamp have been found to accumulate several trace elements and transfer
some contaminants, primarily Se, to developing offspring (Appendix Table IV).
Hatchling slider turtles derived from D-Area females experienced reduced meta-
bolism compared to reference animals, although other traits compared between
the groups did not differ. Hatchling alligators from nests constructed by female
residents of D-Area have also been found to receive Se via maternal transfer, as
have hatchling common grackles. Potential biological ramifications of maternal
transfer of Se to hatchling alligators and grackles have not yet been identified.

The observed sublethal effects of CCR in animals in D-Area, Martin Creek,
and other systems illustrate that numerous traits in individuals can be substantially
modified following chronic exposure to, and accumulation of, contaminants asso-
ciated with CCR in aquatic systems. However, to examine the potential ecological
importance of CCR in aquatic systems, it is necessary to consider the ways that
animal populations and inter- and intra-specific interactions among components
of natural communities are modified in CCR-contaminated systems. Ecological
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changes in response to CCR contamination of aquatic habitats will be considered
in the following section.

4.3. ECOLOGICAL EFFECTS OF CCR

4.3.1. Population and Community Responses to CCR

The research summarized thus far was directed primarily at examining sources, ac-
cumulation, and effects of CCR-related contaminants on individuals in aquatic sys-
tems. However, higher-order, ecological processes have also been found to be mod-
ified as a result of CCR discharge into aquatic systems. Here we present overviews
of research in which modifications to animal populations, interspecific interactions,
and the structure of aquatic communities have been linked to contamination of
aquatic habitats by CCR.

Studies in Rocky Run Creek, WI, examined effects of CCR effluents on popu-
lations and communities of benthic organisms. Dissolved Cd, Cr, and Cu concen-
trations were elevated as a result of disposal of CCR in an ashpit draining into the
creek. Invertebrates accumulated trace elements and exhibited sublethal changes in
metabolism (Table IV). Moreover, effects on invertebrate diversity and abundance
were observed (Table VII). Surveys of aquatic invertebrates were conducted prior
to and during the period of CCR inputs at sites upstream and downstream of the
discharge area. Abundance and diversity of invertebrates within the ashpit drain-
age decreased after CCR inputs began, and over time a pattern emerged in Rocky
Run Creek such that diversity and density of invertebrates were greater as distance
increased from the discharge area (Table VII; Forbes et al., 1981; Magnuson et al.,
1981). Similar effects of CCR on invertebrate abundance or diversity have been
observed elsewhere as well, including the D-Area site in SC, and, in an offshore
CCR disposal site in the United Kingdom (Table VII).

By adversely affecting the abundance, diversity, and/or quality of food resources,
CCR also has substantial indirect effects in higher trophic level consumers. In the
ashpit drainage in the Rocky Run Creek site, fungal decomposition of detritus was
extremely limited, reducing the quality of detrital material available to grazing
invertebrates, perhaps explaining the reductions in diversity and density of benthic
invertebrates in the system (Table VII; Forbes and Magnuson, 1980). Similarly,
extremely low periphyton abundance in the D-Area site may have been partially
responsible for high larval mortality rates in southern toads (Table VII; Rowe et al.,
2001a). Likewise, benthic fish relying on low quality invertebrates from a CCR site
exhibit higher mortality rates and greater reductions in growth than fish exposed to
CCR with high quality resource provisions (Hopkins, 2001).

Ecological changes as a result of CCR inputs to aquatic system have been most
thoroughly studied for populations and communities of fish inhabiting lacustrine
systems receiving CCR. Lemly (1985a) suggested that extirpation of largemouth
bass in Hyco Reservoir, NC resulted from reproductive effects associated with
accumulation of Se (e.g. Appendix Table II). In the same system, severe reductions
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in populations of the bluegill appear to have resulted from female transfer of Se
to offspring, leading to edamatous larvae which were unable to survive the larval
period (Table VI; Gillespie and Baumann, 1986).

In Martin Creek Reservoir, TX, populations of several fish were reduced coin-
cident with a relatively brief period of CCR inputs (8 mo; Table VII). The changes
in abundance of different species of fish resulted in overall changes to the com-
munity structure of the system, which remained for at least three years after CCR
inputs had ceased (Garrett and Inman, 1984). Different trophic levels responded
differently, with planktivorous and carnivorous fish experiencing severe reduc-
tions in total biomass, and omnivorous fish (such as common carp) increasing
somewhat in biomass following effluent release. Three years following the effluent
release, planktivorous fish populations remained extremely low, whereas carni-
vores appeared to have nearly recovered (Garrett and Inman, 1984). The effect
on planktivorous fish was most notable in the gizzard shad, which experienced
an initial reduction in population size from 890 ha=! (1977) to 182 ha~! (1979).
Recovery of this species was slow, having attained a population size of only 264
ha—! 1981 (Garett and Inman, 1984). While some carnivorous species appeared to
have recovered in biomass by the third year following the effluent release, a strik-
ing reduction in small size classes suggested reproductive impairment in surviving
adults.

Perhaps the most notable effects of CCR release into an aquatic site on pop-
ulations of fish were observed in Belews Lake, NC. In this system, surveys of
fish populations, as well as incidence of malformations, were conducted during a
period of CCR inputs and 7 yr after inputs had ceased. Thus a data set spanning a
relatively long time span is available so that population-level effects and recovery
can be examined. The fish populations of Belews Lake are examined in the final
case study.

4.3.2. A Case Study of Ecological Effects of CCR on Fish: Belews Lake, NC

Belews Lake is a 1564 ha cooling reservoir constructed in 1970 by Duke Power
Company. Shortly after construction of the reservoir (prior to inputs of CCR),
monitoring of the fish populations was initiated. In 1974 to 1975, the two units
of the Belews Creek Steam Station went online with a total generating capacity
of 2280 MW (Olmsted et al., 1986). In 1974, discharge of CCR effluents into
Belews Lake began. During a 12 yr period from 1974 to 1985 selenium-enriched
water (150 to 200 ppb; Table III) from a 142 ha coal ash slurry basin was released
into the west side of Belews Lake (Lemly, 1993). By 1976 (2 yr after effluent
release had begun), Duke Power personnel noted a decline in numbers of large
adult fish (Olmsted et al., 1986). Because of community-level changes in Belews
Lake caused by the effluent releases (see below), the power station ceased releasing
effluent into Belews Lake in 1985, adopting a dry landfilling practice for disposal
of coal ash. Because information was available prior to, during, and after release of
the effluents, the occurrences at Belews Lake provide a rare opportunity to examine
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responses and recovery of an aquatic system to CCR contamination (Olmsted et al.,
1986).

Release of CCR effluents into Belews Lake brought about rapid and dramatic
changes in fish populations. All of the 19 fish species collected in Belews Lake in
1975 (one year after effluent release began) displayed morphological abnormalit-
ies, but the centrarchids were the most impacted (Appendix Table V; Lemly, 1993).
Morphological abnormalities included lordosis, kyphosis, partial fin loss, edema,
cataracts, scoliosis, exopthalmus, and head deformities (Lemly, 1993). Fish popu-
lation declines were also observed following the onset of discharges into the lake
(Appendix Table V); from 1975 to 1976, several species exhibited complete repro-
ductive failure (Cumbie and Van Horn, 1978). By 1978 (four years after release of
effluents began), only four species of fish remained in the lake (Appendix Table V;
Lemly, 1993). Piscivorous and planktivorous fish were essentially extirpated from
the lake. Only omnivorous and very tolerant fish (carp, bullhead, mosquitofish, fat-
head minnows) remained (Appendix Table V; Lemly, 1993) and only mosquitofish
maintained a reproductively viable population (Lemly, 1985a). In 1981, fathead
minnows and mosquitofish accounted for 82% of the standing fish stock in Belews
Lake (Olmsted et al., 1986). Moreover, the loss of large predatory species from the
system appears to have allowed some fish having abnormalities to survive, despite
their otherwise high susceptibility to predation (Lemly, 1993).

Initially, several possible causes for the fish declines in Belews Lake were
examined, including thermal loading, fluctuating water levels, entrainment, and
disease or parasitism (Harrell et al., 1978; Olmsted et al., 1986). When these causes
for fish declines were dismissed, the possibility of chemical effects was considered.
In 1977, pesticide levels were measured in water from Belews lake, but all com-
pounds assayed were found to be below detection limits (Cumbie, 1978). However,
analyses of Belews lake water for inorganic contaminants found elevations in As,
Se, and Zn corresponding with the inputs of CCR effluents (Olmsted et al., 1986).
Moreover, following the onset of CCR discharge to Belews Lake, accumulation
of Se in fish tissues was observed (Cumbie, 1978), and whole-body Se burdens
were shown to correlate strongly with morphological abnormalities induced during
embryonic and larval development (Lemly, 1993). Plankton samples collected in
1977 revealed high concentrations of Se (40 to 100 ppm dry mass), suggesting that
the planktonic community was an important source of Se to the fish in Belews Lake
(Cumbie, 1978).

In 1996, 22 yr after effluent release had begun and 11 yr after it had ceased, signs
of recovery were evident, but risks to wildlife species had not completely abated.
Concentrations of Se in sediments had decreased by 65 to 75%, but remained high
enough to pose risks to wildlife via accumulation from ingesting benthic organisms
(Lemly, 1997). Concentrations of Se in ovaries of fish (estimated from whole-body
concentrations) decreased from 40-159 (prior to 1986) to 3—20 ppm dry mass (in
1996; Lemly, 1997). Despite the reduction in Se concentrations in ovaries with
time, Se-induced reproductive anomalies remained abnormally frequent (Lemly,
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1997). The long-term studies of Belews Lake illustrated that release of CCR efflu-
ents can have rapid and widespread effects on aquatic communities. The studies
also demonstrated that recovery of the system was quite slow, possibly due to the
long retention time and low sedimentation rates characteristic of the Belews Lake
IEeServoir.

5. Future Research Needs

In the past several decades, much information on environmental effects of CCR
in aquatic systems has become available. Ecotoxicological studies in many CCR-
contaminated sites have been conducted, and in some cases, long term, multi-
investigator projects have provided extensive information on biological responses
to CCR in specific study sites. Especially in these intensively studied systems,
lethal and sublethal effects on individuals and population declines of some spe-
cies illustrate that release of CCR into aquatic habitats can be environmentally
damaging. Despite the large amount of research that has been conducted to date,
we have identified several topics which require greater attention when examining
this issue in the future.

Because CCR is a chemically complex effluent (Table II), observed biological
effects may often be the result of interactive properties of various compounds. In
some systems, a single component of CCR has been identified as being primarily
responsible for observed biological effects. For example, in the Belews Lake sys-
tem, Se has been shown to be primarily responsible for effects on fish populations,
based upon extensive research that eliminated other potential factors (see Cumbie,
1978; Cumbie and Van Horn, 1978). In other systems (such as the D-Area site),
however, it has proven difficult to isolate the effects of any one component of
CCR as being responsible for the multiple biological responses observed. Rather,
the suite of contaminants potentially interacting agonistically, antagonistically, or
additively on biological systems, and differing in bioaccumulation potentials and
residence times, precludes identification of a particular contaminant as a primary
causal agent. For example, Se and Hg appear to act antagonistically, such that Se
accumulation appears to reduce Hg accumulation; during periods of Se input to a
lake (via CCR), Hg concentrations in fish flesh remained relatively low, but as Se
availability declined after cessation of CCR inputs, Hg concentrations in fish flesh
rose concomitantly (Southworth et al., 1994, 2000).

In such chemically-complex systems, biological responses to CCR must be in-
terpreted as overall responses to the mixture of contaminants available to organisms
in water, sediments, and food. Among different CCR impacted sites, there may be
considerable differences in the suite of trace elements present, their relative concen-
trations, and their bioavailability. Differences in comanagement practices among
facilities can further complicate generalizations due to addition of various organic
compounds to the CCR waste stream. The site-specific variability in water and
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sediment contaminant mixtures and concentrations is problematic when attempting
to assess risks associated with CCR-impacted systems overall. Even when ambient
contaminant concentrations are consistently elevated, the bioavailability of con-
taminants may vary on a site-specific basis due to a variety of physical, chemical,
and biological parameters (Hamelink ef al., 1994). Thus, in many systems CCR
must be treated as a unique effluent, and thorough chemical surveys should be con-
ducted to characterize the overall chemical environment of CCR-impacted areas.
At a minimum, samples from impacted systems should initially be screened for
elevated levels of As, Cd, Cr, Cu, Se, Sr, Hg, Zn, Pb, and Ni due to their abundance
in some CCR-contaminated sites and their demonstrated effects on organisms. As
well as the potentially toxic components of CCR themselves, it is also important to
characterize other abiotic aspects (such as pH, hydrodynamics) of the systems that
may influence metal speciation and availability, thereby influencing accumulation
and toxicity (Soholt et al., 1980; EPRI, 1991).

Co-management of various wastes by industry can produce effluents that con-
tain many more types of contaminants than just the inorganics associated with the
parent coal. The focus of this report on inorganic contaminants emphasizes the
lack of knowledge about the types, quantities, and effects of other compounds that
enter aquatic environments as a result of comanagement strategies. Variability in
comanagement practices among different CCR producing plants (EPRI, 1997) sug-
gests that in some CCR-contaminated habitats aquatic organisms may be exposed
to numerous, potentially harmful organic compounds as well as the mixture of inor-
ganic elements. Comanagement of various waste products is especially common at
disposal facilities using aquatic disposal methods. Ninety-one percent of surveyed
facilities that use aquatic disposal methods reported comanagement of at least one
low-volume waste, and typically more than five low volume wastes are comanaged
at such sites (EPRI, 1997). Because of the differences in comanagement practices
among disposal sites, each CCR disposal facility may be somewhat unique in its
chemical characteristics, presenting unique challenges to aquatic organisms that
interact with the effluents within the disposal site or in downstream areas. It is
therefore important that comanagement practices in use at the CCR source be iden-
tified. Surveys for organic compounds associated with the comanagement practices
in use can be used to examine the potential, additional risks to wildlife associated
with comanaged wastes.

When characterizing the chemistry of CCR-contaminated sites, it is important
that contaminants be quantified in waters, sediments, and tissues. Numerous in-
vestigations have focused solely on dissolved contaminants; however, because the
metals and trace elements found in CCR are often associated with particles that pre-
cipitate from the water column, it is important that sediment chemistry be examined
as well. Sediments may act as long term storage sites for CCR-related contamin-
ants, acting as a source of contaminants to organisms and overlying waters for
long periods after effluent inputs have ceased. Accumulation of contaminants in
sediments can make recovery of aquatic systems following CCR release excep-
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tionally slow. For example, detrital pathways can continue to provide toxic doses
of Se to wildlife in CCR-impacted sites even many years after water-borne Se con-
centrations are below levels of concern (Lemly, 1985a, 1997, 1999). In addition,
future studies should regularly include sampling of tissues from biota within CCR-
impacted sites, since tissue residues may, in some cases, be better predictors of dose
and adverse effects than ambient concentrations alone (Jarvinen and Ankley, 1999).
Because of the association of many CCR-related contaminants with sediments,
benthic organisms may be particularly informative in tissue sampling regimes.

Locations of aquatic CCR disposal facilities must also be considered when ex-
amining potential environmental impacts. Accidental releases of CCR into lentic
systems have been shown to have long term effects on individuals and populations
entrained within the systems. Such releases have been particularly catastrophic in
systems with long water retention times (e.g. Belews Lake, NC; Lemly, 1985b).
On the other hand, lotic systems may provide more rapid dilution of CCR effluents
and transport from the release site. Lotic systems also may be more quickly recol-
onized by aquatic organisms, or allow dispersal of some organisms from the most
impacted areas. However, location of CCR disposal facilities near lotic systems
should not be viewed as a solution to environmental impacts. Very little is known
about CCR release and retention within lotic systems. Shallow areas downstream
from release sites may become sinks for contaminants in sediments due to reduc-
tions in water velocity and settling of suspended materials; these areas would allow
continued resuspension of contaminants from the sediments over long periods of
time (Lemly, 1998, 1999). Of the trace elements found in CCR, Se may be the
contaminant of greatest concern in such shallow, slowly flowing downstream areas
because it is readily leached from sediments and is very mobile in the aquatic
environment (Lemly, 1985b). Studies conducted in Stingy Run and Little Scary
Creek provided mixed results with respect to biological effects, but demonstrated
accumulation of several trace elements by fish and invertebrates in creeks down-
stream of CCR reservoirs (Lohner and Reash, 1999; Reash er al., 1999; Lohner et
al., 2001). Further research in lotic systems such as these would be valuable for
evaluating influences of habitat type (e.g. lotic versus lentic) on toxicity of CCR
related trace elements.

The potential for groundwater contamination from aquatic basins is an issue
that deserves thorough consideration, especially because appropriate monitoring
and protection programs continue to be underutilized at CCR disposal sites (EPRI,
1997; EPA, 2000). The EPA’s recent report on the regulatory status of comanaged
CCR reveals that the percentage of new CCR surface impoundments that use pro-
tective controls has increased in recent years (EPA, 2000). However, 62% of the
existing surface impoundments do not have groundwater monitoring programs,
and 74% of them fail to use protective liners (as of 1995; EPA, 2000). Research
focusing on factors that influence leachability of soluble salts and trace elements
will be important in clarifying the potential impacts of groundwater contamination
on wildlife and human health.
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Many studies of biological responses to CCR have focused on specific, sublethal
effects on individuals. While such studies are very informative, they are sometimes
difficult to interpret with respect to overall relevance to ecological systems (pop-
ulations, communities). If an understanding of ecological changes in response to
CCR disposal is desired, care must be taken in choosing response variables that
reflect the operative environment of the individuals (e.g. environmental factors
ultimately influencing birth, death, or migration; Congdon et al., 2001; Rowe et
al., 2001c¢). In such a way, observed effects on individuals can be examined within
a life history-based perspective, allowing for interpretation within a framework of
potential ecological change.

Finally, future studies should evaluate the importance of aquatic CCR disposal
sites as habitats that attract wildlife from other habitats. Because operation of such
sites usually relies on a high volume water source, they are typically situated
near other aquatic habitats. These nearby aquatic sites, as well as surrounding
terrestrial habitats, are often inhabited by abundant wildlife that may frequent the
contaminated systems. Moreover, areas affected by aquatic disposal of CCR may
be utilized by species that rely on them seasonally for critical portions of their
life cycle. Examples include amphibians that congregate during seasonal breeding
events and waterfowl that may breed or overwinter in CCR-impacted habitats (e.g.
USDI, 1988; Hopkins et al., 1998; Lemly, 1997; Rowe et al., 2001a). Because
CCR disposal in aquatic systems has been associated with complete reproductive
failure in various vertebrate species, consideration should be given to the effects
of CCR disposal on population dynamics of seasonally transient species that may
experience reduced reproductive success when utilizing such sites. Because these
species also eventually leave the contaminated sites, future evaluations should con-
sider their potential as trophic vectors of contaminants not only to other wildlife,
but also to humans.

6. Summary

Continued reliance on coal as an energy source, coupled with a growing amount
of information on the biological effects of coal combustion residues (CCR), em-
phasizes a need for greater consideration of the environmental impacts associated
with CCR. Coal combustion and associated activities in power generating facilit-
ies produce large quantities of wastes. Because the greatest volume of the waste
stream produced is in the particulate phase, consisting primarily of ash, disposal of
this waste product has proved a significant challenge for industry, and, aside from
recycling and use in concrete and other structural materials, has been accomplished
primarily in three ways. Use in mine filling has been rarely used, whereas dry land
filling and ponding of slurried material have been the predominant methods for
disposal. The latter disposal method, currently in use for disposal of roughly one-
third of solid CCR produced in the U.S., has received the greatest attention from
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researchers with respect to potential environmental impacts. This focus by invest-
igators on aquatic (ponding) disposal methods, and thus the basis of this review,
reflects the potential for CCR-related contaminants to affect aquatic organisms that
interact with the disposal systems and nearby aquatic systems that intentionally or
unintentionally receive effluents from the disposal facilities.

Solid CCR has associated with it numerous inorganic elements associated with
the parent coal which are highly concentrated as a result of combustion. Many
of these elements are of concern due to their toxicological activities, including,
but not limited to, As, Cd, Cr, Se, and Zn. Whereas solid CCR (ash) itself does
not appear be a large source of available organic compounds, comanagement of
multiple industrial wastes by disposal facilities can produce a CCR-based effluent
that contains additional organic and inorganic constituents not otherwise associated
with coal ash. The use of comanagement practices by a large proportion (> 90%)
of facilities employing aquatic CCR disposal methods, and the variability among
facilities in the types of comanaged wastes added to the CCR stream, suggests that
the composition of CCR entering any specific aquatic system varies considerably
among sites (EPRI, 1997).

Because of the abundance of inorganic elements in CCR that are known to have
adverse biological effects, most research on CCR-affected aquatic systems has
attempted to relate concentrations of inorganic contaminants in water, sediment,
and/or food with accumulation and effects on aquatic organisms. Systems receiving
CCR have generally been found to be highly elevated in dissolved and sediment-
borne concentrations of several, potentially toxic compounds. Water concentrations
of As, Cd, Cr, Cu, and Se are frequently elevated above background levels, but
are highly variable among sites. One element of particular concern that is found
in high concentrations in CCR is Se, an element known to have potent toxico-
logical effects on reproduction and development. In some systems, dissolved Se
concentrations in or near CCR aquatic disposal facilities consistently exceed the
toxic effects threshold for fish and wildlife (2 ppb) proposed by Lemly (1996),
sometimes by more than an order of magnitude. In systems in which Se was iden-
tified as the primary agent of toxicity (for example, Belews Lake, NC), severe and
long term population level effects on fish have been observed, with the effects
sometimes lasting long after CCR release was ceased. Moreover, potential hazards
associated with dissolved contaminants are not limited to aquatic wildlife, particu-
larly if groundwater contamination occurs near CCR-impacted sites. Dissolved As
concentrations frequently exceed EPA revised drinking water quality criteria (10
ppb) proposed (but recently overturned) for additional protection of human health
(USEPA, 2001).

Biological effects observed in animals inhabiting CCR-contaminated aquatic
habitats appear to be system-wide, influencing multiple processes in individuals
and sometimes bringing about severe ecological changes. Responses to CCR in
aquatic habitats include mortality, reproductive failure, developmental abnormal-
ities, and maternal contributions of contaminants to offspring, as well as changes
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to behavior, endocrinology, and other physiological processes. The most obvious
CCR-related effects were the declines in fish populations seen in the Martin Creek,
Hyco, and Belews Lake systems. The reductions in fish population sizes and ulti-
mate changes in aquatic community structure likely resulted from direct toxicity to
sensitive species and life stages, as well as reproductive impairments resulting from
direct actions on reproductive processes and indirect actions via reduced offspring
performance. The long period of recovery of resident populations after CCR release
ceased (e.g. Martin Creek and Belews Lake) suggests that contaminants can remain
in some aquatic systems for long periods of time (particularly in lentic habitats),
resulting in continued accumulation by biota at levels high enough to cause residual
effects on reproductive health.

While not as immediately obvious as fish population declines, numerous other
biological effects of CCR in aquatic systems indicate potential environmental risks.
CCR and its components can be acutely or chronically lethal to some aquatic
organisms. Sublethal effects on physiology, morphology, and behavior suggest
that various biological processes are simultaneously altered in animals chronic-
ally exposed to CCR in the aquatic environment, with demonstrated or predicted
influences on growth, survival, or reproduction (Rowe ef al., 2001c). Maternal
transfer of Se to eggs of fish, turtles, alligators, and birds suggests the potential for
trans-generational effects, as was seen in fish from Hyco Reservoir. Furthermore,
CCR in aquatic systems has been linked to indirect effects on some animals via
reductions in resource abundance, diversity, and/or quality to the extent that growth
and survival of the consumers are jeopardized. Because terrestrial and semiaquatic
organisms utilize some CCR contaminated aquatic habitats for certain activities
(breeding, foraging), contaminants and their effects are not necessarily confined to
aquatic biota. Rather, transfer of accumulated trace elements from aquatic sites to
nearby terrestrial habitats may occur via trophic interactions.

Future research related to aquatic CCR should include exhaustive chemical
inventories of the sites of study, to identify the spectrum of elements and com-
pounds to which organisms are be exposed. Complete chemical inventories are
particularly important due to the frequency with which multiple industrial wastes
are comanaged with solid CCR, resulting in effluents that may be enriched in
contaminants not normally associated with coal ash itself. Contaminants derived
from CCR may be available to organisms in water, or via sediment or food borne
routes. Thus, chemical characterizations should examine all potential sources of
uptake by aquatic organisms. When examining potential environmental impacts
of aquatic CCR disposal, it is also important that the systems immediately down-
stream of the disposal site be characterized and examined with respect to chemical,
physical, and biological dynamics. The possibility for sediment accumulation and
long-term availability of some contaminants in portions of lotic systems as a result
of physical processes (Lemly, 1998, 1999) suggests that spatial patterns of con-
taminant availability should be examined in these systems. Finally, groundwater
monitoring programs around aquatic CCR disposal facilities and landfills have
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not been universally adopted (EPRI, 1997; EPA, 2000), and only about 28% of
disposal facilities using aquatic methods employ liners in the basins (from a survey
of 259 total facilities; EPRI, 1997). Thus, the potential for leaching of CCR-related
contaminants into groundwater requires further examination to determine whether
current practices are protective of aquifers.
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Appendix Table I

Scientific names of organismsdiscussed in the text and tables. References are provided when
common names or group names were used by different authors to in reference to different or-
ganisms. Absence of a reference implies that usage of common and scientific names coincided for
all relevant authors

Common or group Scientific name Reference, if applicable
name
Plants

Algae Oscillatoria and Hydrodictyon spp. Guthrie and Cherry, 1979
Algae Zygnema sp. Gutenmann et al., 1976
Arrowhead Sagittaria latifolia
Sago pondweed Potamogeton pectinatus
Cattail Typha latifolia
Black willow Salix nigra
Sugar maple Acer saccharinum

Invertebrates
Earthworm Limbrucus terrestris
Asiatic clams Corbicula fluminea
Pond snail Physa integra
Gastropod Physa sp.
Benthic invertebrates Gammarus pseudolimnaeus, Forbes et al., 1981; Magnuson et al., 1981

Hyalella azteca, Baetis spp.,
Stenacron interpunctatum,

Stenonema exiguum, Cheumatopsyche
spp., Hydropsyche spp.,
Chironomidae, Simuliidae
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Appendix Table I

Continued.

Common or group

Scientific name

Reference, if applicable

name
Amphipod Gammarus pseudolimnaeus
Isopod Asellus racovitzai
Crayfish Procambarus acutus Nagle et al., 2001; Rowe
Crayfish Orconectes propinquus et al.,2001b
Crayfish Cambarus sp. Magnuson et al., 1981;

Forbes et al., 1981 Guthrie and Cherry, 1976
Crayfish Procambarus sp. Cherry et al., 1979a and b;

Guthrie and Cherry, 1979
Shrimp Palaemonetes sp.
Grass shrimp Palaemonetes paludosus
Caddisflies Hydropsyche and Cheumatopsyche spp.
Odonates Libellula and Enallagma spp. Guthrie and Cherry, 1979
Odonates Plathemis lydia and Libellula sp. Cherry et al., 1979a
Odonates Libellula and Enallagma spp. Cherry et al., 1979b
Dragonfly Plathemis lydia
Mayfly Hexagenia limbata Finley, 1985
Mayfly Hexagenia sp. Olmsted et al., 1986
Cricket Grillus sp.
Grasshopper Melanoplus sp.

Fish

Spotted gar Lepisosteus oculatus
Blueback herring  Alosa aestivalis
Gizzard shad Dorosoma cepedianum
Threadfin shad Dorosoma petenense
Goldfish Carassius auratus

Common carp
Spottail shiner
Golden shiner
Fathead minnow
Fathead minnow
Bullhead minnow
Red shiner
Satinfin shiner
White sucker
Lake chubsucker
Catfish

Brown bullhead
Black bullhead
Flat bullhead
Snail bullhead
White catfish
Channel catfish
Rainbow trout

Cyprinus carpio
Notropis hudsonius

Notemigonus crysoleucas

Pimephales promelas

Pimephales notatus
Pimephales vigilax
Cyprinella lutrensis

Cyprinella analostana

Lemly, 1993
Benson and Birge, 1985

Catostomus commersoni

Erimizon sucetta
Ictalurus sp.
Ameiurus nebulosus

Ameiurus melas

Ameirus platycephalus

Ameirus brunneus
Ictalurus catus

Ictalurus punctatus

Oncorhynchus mykiss




262

C.L.ROWEET AL.

Appendix Table I

Continued.

Common or group name

Scientific name

Reference, if applicable

Sheepshead minnow
Mosquitofish
Mosquitofish

Banded sculpin
White bass

White perch
Striped bass
Sunfish

Bluegill

Green sunfish
Red ear sunfish
Pumpkinseed sunfish
Long ear sunfish
Redbreast sunfish
‘Warmouth

Black crappie
White crappie
Largemouth bass
Darter

Yellow perch

Bullfrog

Green treefrog
Green frog
Leopard frog

Frog larvae
Southern toad
Fowler’s toad
Narrow-mouth toad
Red spotted newt
Salamanders

Softshell turtle
Slider turtle
American alligator
Banded water snake

Common grackle
Barn swallow

Red wing blackbird
American coot

Muskrat

Cyprinodon variegatus

Gambusia sp.
Gambusia affinis

Lemly, 1993
Cherry et al., 1976, 1979a; Guthrie and

Cherry, 1976, 1979; Hopkins et al., 1999a
Cottus carolinae
Morone chrysops
Morone americana
Morone saxatilis
Lepomis sp. Cumbie, 1978; USDI, 1988
Lepomis macrochirus
Lepomis cyanellus
Lepomis microlophus
Lepomis gibbosus
Lepomis megalotis
Lepomis auritus
Lepomis gulosus
Pomoxis nigromaculatus
Pomoxis annularis
Micropterus salmoides
Ethiostoma sp.
Perca flavescens

Amphibians

Rana catesbeiana
Hyla cinerea
Rana clamitans
Rana pipiens
Rana sp.
Bufo terrestris
Bufo fowleri
Gastrophryne carolinensis
Notophthalmus viridescens

Euraycea sp.

Reptiles

Apalone spinifera
Trachemys scripta
Alligator mississippiensis
Nerodia fasciata

Birds
Quiscalus quiscula
Hirundo rustica
Agelaius phoeniceus

Fulica americana

Mammals
Ondatra zibethicus
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Selenium accumulation by aquatic organisms in Hyco Reservoir, NC. Values
are ppm wet mass. Decimal places reflect those presented by the original

Appendix Table II

authors

Group or Species  Tissue [Se] Reference

Plankton whole body 2.9-5.1 CPL, 1981

Gizzard Shad muscle 2.0-21.2 CPL, 1979

Gizzard Shad ovary 3.1 CPL, 1979

Largemouth bass  muscle 0.1-5.2 CPL, 1979

Largemouth bass  ovary 7.3 CPL, 1979

Black crappie muscle 0.1-10.5 CPL, 1979

Bluegill muscle 0.2-12.2 CPL, 1979

Channel catfish muscle 0.1-94 CPL, 1979

‘White catfish muscle 1.4-2.7 CPL, 1979

Green sunfish muscle 4.1-15.3 CPL, 1979

Flat bullhead muscle 09-19 CPL, 1979

Snail bullhead muscle 2.9 CPL, 1979

Bluegill liver 34.0 Sager and Cofield, 1984
Bluegill muscle 13.0 Sager and Cofield, 1984
Bluegill ovary 12.1 Sager and Cofield, 1984
Bluegill testes 5.4 Sager and Cofield, 1984
Largemouth bass  liver 10.2 Sager and Cofield, 1984
Largemouth bass  muscle 6.7 Sager and Cofield, 1984
Largemouth bass  ovary 10.3 Sager and Cofield, 1984
Channel catfish liver 11.9 Sager and Cofield, 1984
Channel catfish muscle 8.3 Sager and Cofield, 1984
Channel catfish ovary 9.9 Sager and Cofield, 1984
Channel catfish testes 4.4 Sager and Cofield, 1984
‘White catfish liver 10.8 Sager and Cofield, 1984
‘White catfish muscle 5.4 Sager and Cofield, 1984
White catfish ovary 8.9 Sager and Cofield, 1984
Largemouth bass® ovary 72 Baumann and Gillespie, 1986
Largemouth bass® ovary-free carcass 4.0 Baumann and Gillespie, 1986
Largemouth bass? testes 33 Baumann and Gillespie, 1986
Largemouth bass® testes-free carcass 4.1 Baumann and Gillespie, 1986
Bluegill? ovary 11.8 Baumann and Gillespie, 1986
Bluegill? ovary-free carcass 6.9 Baumann and Gillespie, 1986
Bluegill? testes 6.6 Baumann and Gillespie, 1986
Bluegill? testes-free carcass 7.7 Baumann and Gillespie, 1986
Bluegill testes 4.37 Gillespie and Baumann, 1986
Bluegill testes-free carcass  7.81 Gillespie and Baumann, 1986
Bluegill ovary 6.96 Gillespie and Baumann, 1986
Bluegill ovary-free carcass  5.91 Gillespie and Baumann, 1986
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Appendix Table II
Continued.

Group or Species Tissue [Se] Reference

Gizzard shad muscle 8.7-14.7 CPL, 1981

Gizzard shad gonad 7.6 CPL, 1981
White crappie muscle 9.8 CPL, 1981
White crappie gonad 7.6 CPL, 1981
Black crappie muscle 12.0 CPL, 1981
Green sunfish muscle 11.0 CPL, 1981
Channel catfish muscle 6.8-8.8 CPL, 1981
Channel catfish liver 9.2 CPL, 1981
Bluegill muscle 6.7-9.3  CPL, 1981
Brown bullhead muscle 1.3 CPL, 1981

4 Values estimated from bar graph in Baumann
and Gillespie (1986).
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Appendix Table V

Average Se concentrations (ppm dry mass, whole-body), occurence of abnormalities (spinal mal-
formations, accumulation of body fluids, and abnormalities of fins, eyes, or craniofacial region),
and population-level changes in fish in Belews Lake, NC following input of coal ash settling basin
effluent from 1974 to 1985. Selenium concentrations provided are means for normal and malformed
fish, respectively (e.g. entries appear as: concentration in normal fish, concentration in malformed
fish). Data are from Lemly (1993). Dates refer to the following timeline at the Belews Lake site:
1975 — 1 yr after CCR inputs began; 1978 — 4 yr after CCR input began; 1992 — 7 yr after inputs to
the lake had ceased. Decimal places reflect those presented by Lemly (1993)

Species 1975 1978 1992
Selenium concentration Selenium concentration Selenium concentration
(Percent of population (Percent of population (Percent of population

exhibiting abnormalities)  exhibiting abnormalities)  exhibiting abnormalities)

Common carp 62.11, 63.32 107.92, 112.29 15.59, 16.20
3 12) @)

Golden shiner 46.54, 48.37 Extirpated No recolonization
(21

Black bullhead 57.29, 56.07 94.18, 103.05 13.12, 15.76
(6) 21 (®)

Channel catfish 60.91-66.10 Extirpated No recolonization
a7

White perch 55.01, 54.63 Extirpated No recolonization
(33)

Yellow perch 41.87,44.72 Extirpated No recolonization
(3)

Mosquitofish 50.61, 52.17 125.61, 131.87 18.90, 16.48
(21 27 “

Fathead minnow Not observed 86.97, 80.13 21.07, 19.62

(34 (10

White sucker 42.61-43.70 Extirpated No recolonization
(23)

Redbreast sunfish 58.36, 56.12 Extirpated No recolonization
(32)

Green sunfish 66.89, 65.19 Extirpated 12.40, 14.68
(55) (11)

Pumpkinseed sunfish ~ 46.74, 48.34 Extirpated No recolonization
(30

‘Warmouth 51.22, 54.61 Extirpated No recolonization
(22)

Bluegill sunfish 53.83, 50.97 Extirpated 18.40, 19.06
(22) (6)

Redear sunfish 43.13,41.28 Extirpated No recolonization
(10)

Largemouth bass 58.4,59.2 Extirpated 23.19, 19.72
19) (&)

White crappie 62.37,60.21 Extirpated No recolonization

(32)
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Appendix Table V
Continued.
Species 1975 1978 1992
Selenium concentration Selenium concentration Selenium concentration
(Percent of population (Percent of population (Percent of population

exhibiting abnormalities)  exhibiting abnormalities)  exhibiting abnormalities)

Black crappie 60.83, 61.49 Extirpated No recolonization
(29)
Blueback herring ~ 54.70, 56.33 Extirpated No recolonization
(12)
Threadfin shad 39.84, 44.96 Extirpated No recolonization
(22)
Red shiner Not observed Not observed 15.37,13.28
(6)
Satinfin shiner Not observed Not observed 12.39, 11.17
(5)
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