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ABSTRACT

Aim Understanding species distributions is fundamental to effective conserva-

tion planning. Data deficiency is common among rare and imperiled species

and poses challenges for conservation planning because status assessments

become reliant on scant data that can introduce bias. We used occupancy mod-

elling to evaluate support for commonly accepted, but previously untested,

hypotheses regarding factors that drive the occurrence of an imperiled and

data-deficient amphibian, the eastern hellbender (Cryptobranchus alleganiensis).

We investigated the potential for mismatch between areas likely to be identified

as having high conservation priority based on the common assumption that

hellbender occurrence corresponds to areas of high forest cover and those iden-

tified by well-informed models.

Location South-west Virginia, USA.

Methods We conducted triplicate surveys to detect C. alleganiensis in 49

stream reaches stratified across a land use gradient and two major drainages.

We used a Bayesian multimodel framework to investigate factors associated

with C. alleganiensis occupancy. We used the best-performing models to predict

probability of occupancy at the scale of a 50-m stream reach throughout our

study area and identify areas most likely to be occupied.

Results Occurrence of C. alleganiensis was explained primarily by differences

in underlying geology and topography (i.e. physiography) and negative effects

of agriculture were only modestly supported. Best-performing models suggested

~ 35% of our study area was occupied. Our findings suggest that predictions

from models informed by presence-only data and current land use would likely

underestimate C. alleganiensis occupancy by as much as one-third and incor-

rectly classify over half the currently occupied area to be of little importance to

the species.

Main conclusion Our study highlights the potential danger of assuming that

the distribution of data-deficient species can be approximated using untested,

but commonly accepted, species–habitat associations.
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INTRODUCTION

Reliable knowledge regarding species distributions is funda-

mental to effective conservation planning. Biodiversity is

declining at an unprecedented rate and at a global scale

(Hoffmann et al., 2010; IUCN, 2014). Freshwater ecosystems,

in particular, are biodiversity hotspots and face losses and

threats exceeding those in many terrestrial systems (Sala et

al., 2000; Revenga et al., 2005; Strayer & Dudgeon, 2010). A

major challenge to conserving freshwater biodiversity is the

dearth of knowledge regarding distributions of individual

species, which directly limits our ability to reliably identify

areas of high conservation priority (e.g. that contain high

levels of biodiversity or endemic and imperiled species). The

lack of distributional information for species can often be

attributed to financial and logistical constraints associated

with monitoring rare species that are difficult to detect

(Thompson, 2004). As a result, anecdotal accounts, presence-

only (as opposed to presence–absence) data, data collected

from surrogate species and expert opinion often represent

the best available information available to estimate species

distributions (e.g. Abell, 2002; Linke et al., 2011) or assess

risk (Mace et al., 2007). The class of models (hereafter pres-

ence-only models) capable of predicting species distributions

from sparse data and readily available spatial environmental

data have grown in popularity in recent years, but have been

criticized for their potential to both underestimate and over-

estimate distributions (Hermoso et al., 2015). Underesti-

mates of distribution can result from geographically biased

and insufficient survey efforts that often plague sparse data

sets (Yackulic et al., 2013). Overestimates of distributions

might result due to biases in opinion about environmental

variables that are important for species (Donlan et al., 2010)

or due to failure to recognize the importance of hierarchical

filters (e.g. physiological tolerance, dispersal ability, biotic

interactions; Angermeier et al., 2002) that drive biologically

relevant discontinuity in species distributions (Hermoso

et al., 2015). This is important because species distribution

models may be used to inform conservation planning either

by identifying critical habitat or assessing species’ status, and

unreliable predictions can lead to under- or overestimation

of a species’ extant range and extinction risk (Linke et al.,

2011). Therefore, while it may be challenging to test assump-

tions regarding the occurrence and habitat requirements of

imperiled species, doing so has the potential to improve

accuracy of status assessments and the effectiveness of con-

servation strategies (Hermoso et al., 2015).

We used an imperiled and data-deficient amphibian, the

eastern hellbender (Cryptobranchus alleganiensis, Daudin), to

investigate the potential for well-accepted, but untested,

species–habitat relationships to introduce bias into predicted

distributions for data-deficient species. Hellbenders are

stream-dwelling salamanders that make an excellent model

for our study, as they are cryptic and difficult to monitor,

and their current distribution is poorly understood. Among

experts, heavily forested landscapes are considered to be an

indicator of suitable hellbender habitat, while sedimentation

and water quality alteration associated with intensive land

use are commonly suggested as a leading driver of recent

precipitous declines (Williams et al., 1981; Wheeler et al.,

2003; Briggler et al., 2007; Foster et al., 2009). However,

quantitative evidence for land use effects on hellbenders is

generally lacking (but see Quinn et al., 2013). Our first

objective was to investigate factors associated with hellbender

occurrence and explicitly evaluate support for the hypothesis

that occurrence at the scale of a 50-m stream reach is nega-

tively influenced by fine sediment within streams and sur-

rounding human land use. Our second objective was to

develop a predictive model of hellbender occurrence to

investigate how model-based predictions of occurrence might

differ from predictions based on well-accepted, but untested,

species–habitat relationships.

METHODS

Study species

Hellbenders are large (up to 74 cm total length), fully aqua-

tic, long-lived (25+ years; Taber et al., 1975) benthic stream

specialists native to much of the eastern U.S. (Fig. 1). All life

stages are highly cryptic and typically remain hidden beneath

rocky cover (Nickerson et al., 2003; Bodinof et al., 2012a,b).

Given their fully aquatic life history, longevity, highly perme-

able skin and reliance on cool and well-oxygenated water

(Guimond & Hutchison, 1973), hellbenders are often consid-

ered an indicator of long-term in-stream habitat quality.

Hellbender populations have declined precipitously across

the species historic range (Wheeler et al., 2003; Foster et al.,

2009; Burgmeier et al., 2011; Graham et al., 2011; USFWS,

2011). Hellbenders are typically associated with cool, swift-

flowing streams surrounded by forested landscapes and

substrate and water quality alterations associated with defor-

estation are considered to be primary drivers of declines

(Smith, 1907; Nickerson & Mays, 1973; Williams et al., 1981;

Wheeler et al., 2003; Briggler et al., 2007). A major challenge

for conservation planning is a poor understanding of hell-

bender status, namely the dearth of information regarding

the species distribution. However, studies designed to mini-

mize bias in sampling locations, account for imperfect detec-

tion and explicitly test hypotheses of land use effects on the

species are lacking.

Study area

Our study took place within the New River and South Fork

Holston River drainages in south-western Virginia (Fig. 1).

Together, these drainages mark the eastern extent of the hell-

bender’s range in Virginia and a largely unstudied portion of

the species’ total range (but see Hopkins & DuRant, 2011;

Hopkins et al., 2011, 2014, 2016; DuRant et al., 2015). Both

drainages overlap portions of the Blue Ridge and Ridge and

Valley physiographic provinces of the greater Appalachian
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Highlands (Fenneman, 1928; Fig. 1). Physiographic provinces

are delineated by specific differences in geology and topogra-

phy and are important determinants of fish communities in

Virginia (Angermeier & Winston, 1999). Anecdotal reports

indicate hellbenders historically occupied both drainages and

both provinces (Mayasich et al., 2003). The Ridge and Valley

is characterized by a series of steep ridges paralleled by nar-

row valleys, bordered on the west by the Appalachian Plateau

and on the east by the Blue Ridge. Maximum elevations

reach 1400 m and geology consists primarily of sedimentary

rock, with uplands composed largely of sandstones and

shales and lowlands composed heavily of limestone. The Blue

Ridge consists of relatively steep topography bordered by the

Ridge and Valley to the west and by the Piedmont to the

east. In south-west Virginia, the Blue Ridge widens and

forms a broad plateau-like upland hosting the highest eleva-

tion (1749 m) in the state and a divide for waters draining

to the Atlantic and Gulf of Mexico. In contrast to the Ridge

and Valley, geology in the Blue Ridge is relatively impervi-

ous, composed primarily of metamorphic and igneous rock,

including granites, schist and gneiss, with limestones and

shales more common on western slopes. Relative to the

Ridge and Valley, Blue Ridge slopes are steep and soils are

thin (Nelms et al., 1997).

Sampling design

To investigate effects of land use on hellbender occurrence,

we used a spatially balanced random stratified design (Ste-

vens & Olsen, 2004) to select a sample of 49 stream reaches

for our study. We considered a sampling pool of all fourth-

order or larger stream segments delineated within the

National Hydrography Dataset (NHD) Plus version 2.1

(1:100,000 scale; USGS & USEPA, 2012). To ensure our sam-

ple represented the full range of land use in our study area,

we quantified the percentage of forest (USGS, 2011) in

upstream catchments delineated for each of 661 segments in

our sampling pool and stratified our sample across bins rep-

resenting a human activity gradient (Yates & Bailey, 2010)

ranging from 50 to 94% forest. While the range of land use

in our study area was somewhat narrow, it largely overlaps

the range of forested land use among stream reaches in Mis-

souri where hellbenders have declined by an average of 77%

(Wheeler et al., 2003; % forest = 46–64% [Big Piney R.];

Legend
Historic range
Drainages
Reservoirs
Streams

!( Sampling locations
Physiographic provinces

Blue Ridge
Ridge and Valley 0 20 40 60 8010

Km

Figure 1 Location of Cryptobranchus alleganiensis sampling reaches in south-west Virginia, USA.
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28–57% [Gasconade R.]; 70–71% [Niangua R.]; 63–64%
[North Fork White R.]; 70–79% [Eleven Point R.]). We used

a generalized random tessellation stratified (GRTS) approach

to reduce spatial autocorrelation among our sample reaches

while still employing a true probability design, using the

package ‘spsurvey’ (Kincaid & Olsen, 2013) in Program R

(Team, 2013). Our final sample of 49 segments represented

16 streams (n = 1–6 segments per stream). For the purposes

of our study, we investigated occupancy at the scale of a 50-m

stream reach (widths were variable; Table 1). We selected

the first 50 m reach that contained at least two boulders

(Wentworth, 1922) or at least one irregular bedrock ledge

during our first visit to each of the 49 pre-selected stream

segments. Hellbenders are highly dependent on rocky cover

Table 1 Summary of covariates considered in modelling detection and occupancy of Cryptobranchus alleganiensis in Virginia, USA,

2013–2014.

Covariate Description Data source Median (range)

Predicted

effect

Fixed effect covariates

visibility Lateral secchi distance (m) while snorkelling;

measured prior to each survey

Field measurement 1.6 (0.4–6.0) +

size Extent (m2) of the sampling reach Wetted width 9 50 1450 (400–9400) �
fine Proportion of gravel, sand and silt particles

(b-axis ≤ 1.6 cm)

Pebble count 0.34 (0.15–0.83) �

boulder Proportion of boulders (b-axis > 25 cm) Pebble count 0.08 (0.01–0.28) +

riffle Proportion of 100 stratified sampling locations

that occurred in riffles

Field measurement 0.30 (0.00–0.88) +

pool Proportion of 100 stratified sampling locations

that occurred in pools

Field measurement 0.16 (0.01–1.00) �

elev Elevation (m) of the sampling reach NED (USGS, 1999) 593 (464–797) +

contr. area Extent (km2) of contributing area for the

sampling reach

NHDPlus V2 409 (49–7631) +

physiography Proportion of the upstream catchment within

the Blue Ridge physiographic province

Fenneman & Johnson (1946) 0.60 (0.00–1.00) �

Catchment land use

ag.c Proportion of land use characterized as pasture,

cultivated crop, and grassland within the

upstream catchment

NLCD 2011 0.29 (0.09–0.41) �

dev.c Proportion of land use characterized as medium

and high-intensity development within the

upstream catchment

NLCD 2011 0.00 (0.00–0.02) �

Catchment-riparian land use

ag.cr Proportion of land characterized as pasture,

cultivated crop and grassland within a 50-m

buffer on both sides of all delineated

streams within the upstream catchment

NHDPlus V2, NLCD 2011 0.30 (0.11–0.47) �

dev.cr Proportion of land characterized as medium and

high-intensity development within a 50-m buffer

on both sides of all delineated streams within the

upstream catchment

NHDPlus V2, NLCD 2011 0.00 (0.00–0.02) �

Immediate-riparian land use

ag.ir Proportion of land use characterized as pasture,

cultivated crop and grassland within a 50-m buffer

on both sides of the sample reach and extending

upstream for 300 m

NLCD 2011 0.25 (0.00–0.91) �

dev.ir Proportion of land use characterized medium and

high-intensity development within a 50-m buffer

on both sides of the sample reach and extending

upstream for 300 m

NLCD 2011 0.00 (0.00–0.42) �

Random effect covariates

RIVER Random effect variable with 16 levels representing

the river in which the sample reach was located

NED, National Elevation Dataset; NHD, National Hydrography Dataset; NLCD, National Land Cover Dataset.
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and are rarely encountered far from shelter (Bodinof et al.,

2012b). Thus, our prerequisite for the occurrence of rocky

substrate in each reach was intended to avoid sampling habi-

tats that were unavailable to hellbenders, while allowing for

high variability in habitat quality among reaches.

We surveyed each reach on three occasions using snorkel-

ling while turning rocks (Nickerson & Krysko, 2003) in 2013

(n = 37 sites) or 2014 (n = 12 sites). On each occasion, we

ceased surveys once a hellbender was detected, to limit

habitat disturbance. If no hellbender was detected, we cea-

sed efforts once the entire reach had been searched. For

detailed survey methodology, see Appendix S1 in Supporting

Information.

Predictors

We quantified all in-stream predictors (Table 1) from data

collected during our initial visit to each sampling reach and

prior to conducting hellbender surveys. To calculate reach

size (Table 1), we used a measure of wetted width collected

at a point visually estimated to represent average width of

the sample reach, using a Nikon Prostaff© laser rangefinder.

We quantified meso-habitat (pool, riffle, run) and substrate

characteristics from data collected in a modified Wolman

(1954) pebble count with 100 observations in each reach.

We quantified landscape-scale predictors (Table 1) from

remotely sensed data in ARCMAP v.10.1 (ESRI, Redlands, CA,

USA). First, we delineated catchments for each sampling

reach and used catchments to quantify contributing area

(km2) as a proxy of stream size as per Wenger et al. (2008).

We quantified the proportion of each catchment that fell

within the Blue Ridge and Ridge and Valley physiographic

province and quantified land use at three spatial scales

(Table 1). We quantified land use at the catchment, catch-

ment-riparian and immediate-riparian spatial scales (defined

in Table 1). We used non-forested land use categories (here-

after agriculture and developed), as predictors in our analy-

sis. We pooled crop and grassland categories from the

national land cover data set (NLCD; USGS, 2014) to repre-

sent agricultural land use, and pooled medium (50–79%
impervious surface, typically single family residence) and

high-intensity development (80–100% impervious surfaces,

typically residential, commercial and industrial) NLCD cate-

gories to represent developed land use (Table 1).

Model development

We used single season occupancy models to investigate fac-

tors associated with hellbender occurrence and detection

while snorkelling. Briefly, occupancy models are hierarchical

state-space models that are used to estimate species occur-

rence while accounting for imperfect detection. Occupancy is

defined as the probability that the target species occurs

within some area of interest (MacKenzie et al., 2006). Failure

to account for imperfect detection (i.e. probability of detect-

ing a species during a single survey is < 1) can lead to

negatively biased estimates of occupancy (MacKenzie et al.,

2006). Sampling approaches for occupancy modelling are

varied (MacKenzie & Royle, 2005; Bailey et al., 2007), but

generally entail repeat surveys of sampling units, where the

target species is either detected or not during each survey.

Models allow for inclusion of predictor covariates and thus

the potential to examine support for hypotheses concerning

the effect of extrinsic factors on species occurrence or detec-

tion (MacKenzie et al., 2002).

We used a multimodel framework, where we investigated

relative support for multiple hypotheses concerning factors

associated with hellbender occurrence. We considered fixed

effects of 15 continuous variables in our analyses (Table 1).

We hypothesized positive effects of visibility and either a

positive (i.e. as a function of area surveyed) or negative (i.e.

due to deep (> 2 m) water) influence of contributing area

on detection. We also considered an interaction between

contributing area and visibility, where we predicted increased

importance of visibility in large rivers, where deep water was

more common. We hypothesized negative effects of agricul-

ture and developed land use on detection as a result of

decreased local abundance due to altered water quality and

increased sedimentation.

We hypothesized effects of physiography on hellbender

occurrence, given that physiography corresponds to distinct

differences in underlying geology and topography that has

been associated with distributions of freshwater fish in the

same region (Angermeier & Winston, 1999). We hypothe-

sized positive effects of elevation, canopy cover, boulder sub-

strate, and of riffle over pool, and negative effect of fine

substrates and non-forest land use at all scales based on

habitat associations reported for hellbenders (Nickerson &

Mays, 1973; Humphries & Pauley, 2005; Quinn et al., 2013).

We hypothesized a positive effect of contributing area, given

that sample reach extent (m2) increased with contributing

area as a function of increasing wetted width. Finally, we

considered an interaction between physiography and land

use, to represent our hypothesis that susceptibility of reaches

to land use effects would vary depending on underlying geol-

ogy and topography associated with physiographic province.

In addition to fixed effects, we considered random effects

of the river where reaches occurred in both detection and

occupancy models. While we designed our study to maxi-

mize independence between sample reaches, we recognized

that stream networks are innately hierarchical in structure.

As a result, we considered it likely that reaches within a

stream may be more similar to each other than to reaches in

other streams. Failure to account for such dependencies can

lead to biased estimates in the response of interest and an

increase in type I errors (Latimer et al., 2006; Dormann

et al., 2007). Therefore, we wanted to investigate the possi-

bility that nesting of reaches within streams may have intro-

duced a problematic level of spatial autocorrelation into our

data. On the contrary, we wanted to avoid overfitting models

if inclusion of random effects was not warranted, as doing so

would be likely to reduce our power to detect effects from

Diversity and Distributions, 22, 865–880, ª 2016 John Wiley & Sons Ltd 869

Assumptions matter when predicting distributions



covariates of interest. To address our concerns, we fit candi-

date models both with and without a random effect term for

river, in both steps of our analysis. We used model rank

along with examination of fitted slope coefficients to deter-

mine whether river was an important source of variation in

our study. To aid model convergence and interpretation of

fixed effects, we standardized x��x
sdðxÞ

� �
all continuous covari-

ates other than proportions and multiplied developed land

use proportions (due to very small values) by 10 prior to

analysis. We screened predictor variables based on Pearson’s

correlation coefficients to avoid problems associated with

coefficient estimation when predictors were collinear. We

selectively discarded one of each pair of correlated predictors

(r ≥ 0.7 or ≤ � 0.7). Catchment and catchment-riparian

land use were strongly correlated (agriculture: r = 0.87,

P < 0.001; developed: r = 0.84, P < 0.001, df = 47), as were

contributing area and size of the sample reach (r = 0.86,

P < 0.001, df = 47). We retained catchment land use over

catchment-riparian land use, and contributing area over size

of the sample reach based on fit statistics from models that

included only one of the pairs at a time.

Given our small sample size relative to the number of

covariates considered, we wanted to avoid spurious results

due to fitting an overly large set of candidate models (Ander-

son & Burnham, 2002). To maximize parsimony, we used a

two-step approach (MacKenzie et al., 2006), where we exam-

ined support for covariates hypothesized to influence detec-

tion while holding occupancy constant in step one. In step

two, we modelled detection as a function of all covariates

that occurred in models that outranked our null model in

step one, while examining support for covariates hypothe-

sized to influence occupancy.

Model fitting and selection

We used a Bayesian approach to fit and rank candidate mod-

els. Unlike maximum likelihood, Markov Chain Monte Carlo

(MCMC) approaches to model fitting can accommodate ran-

dom effects within hierarchical models (Royle & Dorazio,

2008). We fit all models in OPENBUGS v3.2.3 [originally

written as WINBUGS (Lunn et al., 2000)] using the package

‘R2OpenBUGS’ [originally written as R2WINBUGS (Sturtz

et al., 2005)] in program R (Team, 2013). In our model

specification, we employed non-informative priors to the

extent possible. We specified uniform distributions between

� 10 and 10 on the logit scale for intercepts. When we spec-

ified uniform distributions (e.g. between � 10 and 10) for

coefficients, posterior distributions for some coefficients

appeared ‘cut-off’ at either the upper or lower end. As a

result, we specified diffuse independent normal prior distri-

butions for coefficients that were centred at zero with preci-

sion of 1 9 10�2, after determining that mean estimates and

precision were generally insensitive to our choice of prior.

We specified priors for the standard deviation of random

effects as a uniform distribution between zero and 15. We

obtained posterior distributions from every 25th iteration

from three independent Markov chains, where each chain

contained 20,000 iterations and the initial 2000 iterations

were discarded as burn-in. We visually inspected MCMC

chains to ensure proper mixing and used the Brooks–Gel-
man–Rubin diagnostic as a criterion to ensure convergence,

where we assumed convergence was reached when R-hat of

all parameters reached 1.0 (Gelman & Rubin, 1992). We

ranked models using the Wantanabe–Akaike information cri-

terion (WAIC; Wantanabe, 2010) where we calculated WAIC

as defined by Vehtari & Gelman (2014). Similar to other

model ranking criteria, WAIC represents a measure of model

fit corrected by a penalty for model complexity. Unlike other

criteria (e.g., Deviance information criteria (DIC); Spiegelhal-

ter, 2002), WAIC assesses fit based on full posterior predic-

tive distributions rather than point estimates and is thus

recognized as the only fully Bayesian model ranking criterion

(Hooten & Hobbs, 2015). Furthermore, unlike DIC, WAIC

is considered valid in hierarchical and mixture models

because of the manner in which the penalty term (i.e. num-

ber of effective parameters) is estimated for each model (see

Hooten & Hobbs, 2015; Vehtari & Gelman, 2014). Currently,

methods for handling model selection uncertainty in Baye-

sian analyses remains unclear, but model averaging

approaches are not considered appropriate (Hooten &

Hobbs, 2015). We considered models that outranked a null

model (hereafter, top-ranked models) as being well enough

supported to warrant further consideration. Prior to drawing

inference, we subjected each top-ranked model to validation

procedures to ensure each was useful.

Model validation

We used k-fold cross-validation (Boyce et al., 2002) and area

under the receiver-operating curve (ROC; Metz, 1978) to

evaluate model performance. First, we randomly partitioned

our original data five times according to Huberty’s (1994)

rule of thumb, each time excluding 33% of the data for test-

ing. We refit models with each draw of training data and

used newly fitted models to predict the parameter of interest

(detection or occupancy) for each case in their complemen-

tary test data. For validation, we assumed that apparent

occupancy after three surveys represented the true state of a

reach. We pooled test results for each model to estimate area

under the ROC curve using the package ‘ROCR’ (Sing et al.,

2005) in program R (Team, 2013). Briefly, the ROC curve is

a plot of sensitivity (probability of correctly classifying a true

positive) against specificity (probability of correctly classify-

ing a true negative) across a range of cut-offs between zero

and one (Metz, 1978). The area under the curve (AUC) is

cut-off independent and defined as the probability that a

model will score a randomly drawn positive sample higher

than a randomly drawn negative sample. Values of AUC

equal to 0.5 indicate a complete lack of predictive power

(i.e. random), with values of 1.0 indicating perfect predictive

performance (Cumming, 2000). We report posterior mean

coefficients and model derived estimates of detection and
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occupancy along with their 95% credible intervals for our

top-performing models based on AUC scores.

RESULTS

We detected hellbenders in both major drainages (New = 7

of 36 reaches; South Fork Holston = 6 of 13 reaches), in

eight of 16 rivers, and in 26% of all reaches surveyed. We

detected hellbenders during all three surveys in six reaches,

during only two surveys in two reaches and during only one

survey in five reaches. Most (26 of 27) individuals were sexu-

ally mature adults and there was no association between total

length (proxy of age) and land use. However, our sample

sizes were small (n = ≤ 3 hellbenders per reach).

Detection

We pooled terms from three detection models that outranked

the null model in step one (Table 2) to define the detection

model in step two. Posterior distributions for fixed effect

detection coefficients and AUC estimates for all models in

step two were similar and indicated excellent performance of

our detection model (AUC = 0.97; Table 2). Predictions from

the model supported our hypothesis that the threshold of vis-

ibility necessary to detect hellbenders depended largely on size

of the river being surveyed (Table 2). Our model predicted

that under average visibility (1.75 m) detection declined

exponentially as river size increased (Fig. 2a). Once visibility

exceeded about 3 m, detection was predicted to remain extre-

mely high even in large rivers, although uncertainty regarding

the effects of visibility was considerable (e.g. Table 3, Fig. 2b).

Notably, the river size effect appeared to be driven by a single

river (main stem New R.) that contained all of the surveyed

reaches with contributing areas > 800 km2. In contrast to our

predictions, the model suggested detection was positively

associated with the proportion of the immediate-riparian area

classified as agriculture, although uncertainty regarding effects

of land use was also considerable (Table 3, Fig. 2c). Although

the final model included developed land in the immediate-

riparian area as a covariate of detection, the predicted effect

of developed land was negligible (Table 3).

Occupancy

Six models met our criteria for further consideration based

on model ranking. These included a physiography only

model, a physiography 9 catchment land use model, and the

duplicates of both models that included the random effect

term for river, all of which performed similarly well

(AUC = 0.83–0.86; Table 2). Additionally, two models that

included local variables with and without the random effect

term for river outranked a null model, but performed rela-

tively poorly (AUC = 0.76–0.79; Table 2). Posterior distribu-

tions for fixed effect coefficients in the top-ranked models

were virtually identical regardless of whether the random

effect term was included (Table 3), suggesting negligible

autocorrelation in the occupancy state of each reach as a

result of site being nested within the same river. For simplic-

ity, we focus our interpretation of results on the two best-

performing models while ignoring random effects.

Collectively, results supported the hypotheses that hellben-

der occurrence was driven primarily by physiography, and

demonstrated modest support for negative effects of agricul-

tural and developed land use when quantified at the catch-

ment scale (Table 2). The most parsimonious model, which

included only physiographic province, predicted that reaches

with catchments that fell entirely within the Blue Ridge

(Ŵ = 0.67, 0.41–0.88) were about 16 times more likely to be

occupied that those with catchments that fell entirely within

the Ridge and Valley province (Ŵ = 0.04, 0.00–0.18; Fig. 3).
Extrapolation of the physiography model across our entire

study area predicted that only 36% of our study area was

occupied by our target species (Table 4).

The equally well-performing but less parsimonious model

included an interaction between physiography and catchment

land use. However, credible intervals for coefficients associ-

ated with land use variables overlapped zero (Table 3), sug-

gesting a great deal of uncertainty regarding effects of

agriculture and development on hellbender occurrence. This

model predicted that, holding developed land use constant at

the mean observed (0.2%), reaches with catchments entirely

in the Blue Ridge were twice as likely to be occupied when

10% of land use was agricultural (Ŵ = 0.93, 0.46–1.00) com-

pared with when 40% of land use was agricultural

(Ŵ = 0.47, 0.13–0.84). Reaches with catchments entirely in

the Ridge and Valley were predicted to have extremely low

occupancy regardless of land use but were twice as likely to

be occupied when agriculture composed just 10% of land

use throughout the catchment (Ŵ = 0.05, 0.00–0.39) com-

pared with 40% (Ŵ = 0.02, 0.00–0.17; Fig. 4a). The physiog-

raphy 9 land use model also suggested a negative effect of

developed land use on hellbender occupancy, but only in the

Blue Ridge, and uncertainty regarding effects of development

was considerable (Table 3). Extrapolation of the physiogra-

phy 9 land use model across our entire study area predicted

that only 34% of our study area was occupied by our target

species (Table 4).

Extrapolation of model predictions across our study area

suggested that failing to account for physiography and

assuming that high forest cover within a stream catchment

functions as a reliable indicator of occurrence would yield

numerically and spatially biased estimates of hellbender dis-

tribution. For example, our results indicated that over half

(53–60%) of the habitat predicted to be occupied by hellben-

ders consisted of stream segments with catchments currently

characterized by only moderate (≤ 65%) levels of catchment

forest cover (Fig. 5). Furthermore, our model indicated that

the majority of stream habitat characterized by heavily

(≥ 70%) forested catchments was of little importance to our

target species, given that over half (148 of 223 stream km) of

the most heavily forested stream reaches fell within the Ridge

and Valley physiographic province where occupancy was
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extremely low (≤ 0.05). Assuming that stream reaches with

heavily (≥ 70%) forested catchments function as a proxy of

hellbender distribution in our study area would yield erro-

neous conclusions for our target species in two ways. First,

the proportion of area occupied would be underestimated by

about one-third (i.e. 25% vs. 34–36%). Second, over half of

the area occupied by our target species (i.e. moderately

forested stream reaches) would be misclassified as being of

little importance to the species, while a narrow region (i.e.

heavily forested Ridge and Valley reaches = 16% of study

Table 2 Candidate models and area-under-the-curve (AUC) measures of performance used to evaluate support for factors influencing

detection (step 1) and occupancy (step 2) of Cryptobranchus alleganiensis in Virginia, USA, 2013–2014, ranked from highest to lowest

according to a Wantanabe–Akaike information criterion (WAIC).

Model WAIC AUC (Ψ) AUC (p)

Step one

Ψ(.) p(visibility + ag.ir + dev.ir + RIVER) 144.65

Ψ(.) p(RIVER) 144.72

Ψ(.) p(visibility + contr. area + visibility*contr.area) 144.73

Ψ(.) p(.) 144.79

Ψ(.) p(visibility + contr. area + visibility*contr.area + RIVER) 145.94

Ψ(.) p(visibility) 146.11

Ψ(.) p(visibility + RIVER) 146.24

Ψ(.) p(visibility + ag.ir + dev.ir) 146.84

Ψ(.) p(visibility + contr. area) 147.42

Ψ(.) p(visibility + contr. area + RIVER) 147.49

Ψ(.) p(visibility + ag.c + dev.c + RIVER) 149.09

Ψ(.) p(visibility + ag.c + dev.c) 149.23

Step two

Ψ(physiography) p(visibility + contr. area + visibility*contr. area + ag.ir + dev.ir + RIVER) 133.86 0.83 0.97

Ψ(physiography + ag.c + dev.c + physiography*ag.c+ physiography*dev.c) p(visibility + contr.

area + visibility*contr. area + ag.ir + dev.ir + RIVER)

137.83 0.84 0.97

Ψ(pool + riffle + canopy + contr. area) p(visibility + contr. area + visibility*contr.

area + ag.ir + dev.ir + RIVER)

138.05 0.76 0.97

Ψ(physiography + RIVER) p(visibility + contr. area + visibility*contr. area + ag.ir + dev.ir + RIVER) 139.12 0.85 0.97

Ψ(physiography + ag.c + dev.c + physiography*ag.c+ physiography*dev.c + RIVER) p(visibility +

contr. area + visibility*contr. area + ag.ir + dev.ir + RIVER)

142.68 0.86 0.97

Ψ(pool + riffle + canopy + contr. area + RIVER) p(visibility + contr. area + visibility*contr.

area + ag.ir + dev.ir + RIVER)

142.79 0.79 0.97

Ψ(.) P(visibility + contr. area + visibility*contr. area + ag.ir + dev.ir + RIVER) 147.40

Ψ(ag.c + dev.c) p(visibility + contr. area + visibility*contr. area + ag.ir + dev.ir + RIVER) 149.33

Ψ(RIVER) p(visibility + contr. area + visibility*contr. area + ag.ir + dev.ir + RIVER) 152.03

Ψ(ag.c + dev.c + RIVER) p(visibility + contr. area + visibility*contr. area + ag.ir + dev.ir + RIVER) 153.37

Ψ(boulder + fine) p(visibility + contr. area + visibility*contr. area + ag.ir + dev.ir + RIVER) 153.76

Ψ(ag.ir + dev.ir) p(visibility + contr. area + visibility*contr. area + ag.ir + dev.ir + RIVER) 154.43

Ψ(physiography + ag.c + dev.c + boulder + fine + contr. area) p(visibility + contr. area +

visibility*contr. area + ag.ir + dev.ir + RIVER)

154.97

Ψ(ag.c + dev.c + ag.ir + dev.ir) p(visibility + contr. area + visibility*contr. area + ag.ir + dev.ir + RIVER) 155.35

Ψ(elev + ag.c + dev.c + contr. area) p(visibility + contr. area + visibility*contr. area + ag.ir +

dev.ir + RIVER)

158.73

Ψ(boulder + fine + RIVER) p(visibility + contr. area + visibility*contr. area + ag.ir + dev.ir + RIVER) 158.87

Ψ(ag.ir + dev.ir + contr. area + RIVER) p(visibility + contr. area + visibility*contr.

area + ag.ir + dev.ir + RIVER)

159.17

Ψ(physiography + ag.c + dev.c + boulder + fine + contr. area + RIVER) p(visibility + contr.

area + visibility*contr. area + ag.ir + dev.ir + RIVER)

159.36

Ψ(ag.c + dev.c + ag.ir + dev.ir + RIVER) p(visibility + contr. area + visibility*contr.

area + ag.ir + dev.ir + RIVER)

160.56

Ψ(elev + ag.c + dev.c + contr. area + RIVER) p(visibility + contr. area + visibility*contr.

area + ag.ir + dev.ir + RIVER)

162.92

Ψ(boulder + fine + contr. area) p(visibility + contr. area + visibility*contr. area + ag.ir +

dev.ir + RIVER)

163.25

Ψ(boulder + fine + contr. area + RIVER) p(visibility + contr. area + visibility*contr.

area + ag.ir + dev.ir + RIVER)

169.92
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area) with extremely low occupancy would be misclassified

as being of great importance (Fig. 5).

DISCUSSION

We found that the distribution of an imperiled and data-

deficient species was better predicted by broadscale patterns

in underlying geology and topography, defined by physio-

graphic province, than variables based on well-accepted

species–habitat associations. Hellbenders were exceedingly

rare in the Ridge and Valley physiographic province relative

to the Blue Ridge, even among stream reaches with heavily

(≥ 70%) forested catchments. The physiography effect we

report is not surprising, as physiography has been shown to

be an important determinant of both stream macro-inverte-

brate and fish distributions in several regions including Vir-

ginia (Angermeier & Winston, 1999; Feminella, 2000; Van

Sickle et al., 2004; Utz et al., 2009, 2010; Pool et al., 2010).

However, the mechanisms by which physiography influences

hellbender distribution remain unclear. Physiography is an

important determinant of hydrological patterns and physic-

ochemical properties in streams and can directly influence

habitat suitability for aquatic species. Ridge and Valley

streams are characterized by lower base flows (Nelms et al.,

1997), higher levels of dissolved solids, harder water and

slightly basic pH relative to Blue Ridge streams, due largely

to innate differences in reactivity between water and under-

lying bedrock (Puckett & Bricker, 1992; Swain et al., 2004).

Therefore, although hellbenders were historically reported

from many Ridge and Valley streams in our study area

(Mayasich et al., 2003), abundance may have always been

low in the Ridge and Valley relative to the Blue Ridge due

to inherent differences in physiography.

Other than possible differences in inherent habitat suitabil-

ity variation in hellbender occurrence among among physio-

graphic provinces could be a legacy effect (Foster et al.,

2003) of historical land use intensity within each province.

Physiography can influence the suitability of the terrestrial

landscape for particular human land uses via topography,

soil chemistry and vegetation community composition and

structure (Godfrey, 1977), and thereby influence exposure of

streams to various land use practices (Brown et al., 2005).

For example, the Blue Ridge is known to have experienced

less exposure to agriculture and intensive logging relative to

the neighbouring Piedmont physiographic province (Brown

et al., 2005). Agriculture and urbanization have been shown

to negatively impact occurrence and abundance of many

aquatic species (Barrett & Guyer, 2008; Wenger et al., 2008;

Utz et al., 2009, 2010; Ficetola et al., 2010; Pool et al., 2010;

Price et al., 2011). Given their high degree of specialization

and dependence on benthic microhabitat, it was somewhat

surprising that hellbender occurrence did not respond more

strongly to current land use or substrate characteristics.

However, given longevity of our target species (25+ years),

considerable lag could be expected to separate the onset of

mechanisms of population decline (e.g. reduced recruitment)

and extirpation. Utz et al. (2010) reported differential effects

of land use on the distribution of fishes from different phys-

iography provinces in Maryland, and hypothesized legacy

effects similar to those we discuss here. If the Ridge and Val-

ley province was historically exposed to higher levels of agri-

culture or logging or if physicochemical conditions in

streams responded to land use differently than in the Blue

Ridge, historical land use might be an equally strong (or bet-

ter) predictor of current hellbender distribution than phys-

iography. Unfortunately, high-resolution (≤ 30 m) digitized

land use data for our study area that pre-dates the 1990s is

lacking, which precluded our ability to investigate the poten-

tial role of land use legacy effects.
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Figure 2 Predicted detection probability for Cryptobranchus

alleganiensis as a function of (a) contributing area upstream of

the reach when holding visibility constant at 1.75 m and as a

function of (b) visibility when holding contributing area

constant at 1000 km2, and (c) riparian land use while holding

visibility at 1.75 m and contributing area the median observed

value (400 km2). Note the suggested need for visibility ≥ 2 m

for even a minimal chance of detection when surveying large

rivers (e.g. widths ≥ 50 m). Solid lines represent mean estimates

and dashed lines represent 95% credible intervals based on 1000

random samples drawn from MCMC chains.
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Given our findings, we began to speculate that water qual-

ity, whether driven primarily by physiography or by more

complex interactions between physiography and land use,

may function as an underlying mechanism linking physio-

graphic province to current patterns of hellbender

distribution. As a post hoc attempt to evaluate this hypothe-

sis, we measured water quality at a subset of 30 stream

reaches in December 2015. We found that conductivity

Table 3 Coefficients and their associated 95% credible intervals for best performing models describing detection and occupancy of

Cryptobranchusalleganiensis in the New River and South Fork Holston River drainages, Virginia, USA.

Rank Parameter Estimate 95% CI nEffa R-hatb

Detection

1 Intercept �2.3809 �7.0390 1.5350 54,000 1.0010

visibility 0.7464 �1.1690 2.8400 54,000 1.0010

contr. area �9.1743 �16.4900 �3.3330 16,000 1.0011

visibility X contr. area 5.9220 0.8489 14.0300 54,000 1.0010

ag.ir 11.3555 0.4048 24.4603 7000 1.0013

dev.ir �0.3474 �19.9700 19.4700 13,000 1.0011

RIVER . . . .

Occupancy

1 Intercept �3.2932 �5.7480 �1.5650 14,000 1.0011

physiography 4.0368 1.7800 6.9910 18,000 1.0011

2 Intercept �2.5040 �6.5250 0.8027 54,000 1.0010

physiography 5.9221 1.5060 10.9600 51,000 1.0010

ag.c �3.8376 �15.9600 8.0991 54,000 1.0010

dev.c 0.4034 �15.8000 16.0503 54,000 1.0010

physiography X ag.c �5.0249 �19.0000 8.6940 54,000 1.0010

physiography X dev.c �2.4834 �21.5703 16.5003 54,000 1.0010

4 Intercept �3.8036 �7.4640 �1.3590 5200 1.0013

physiography 4.8044 2.0517 9.0324 3800 1.0014

RIVER . . . . .

5 Intercept �2.7563 �7.6100 1.3175 15,000 1.0011

physiography 6.0134 1.3115 11.3900 6700 1.0013

ag.c �4.0739 �16.9753 8.6845 33,000 1.0010

dev.c �0.0757 �17.2000 16.5000 29,000 1.0010

physiography X ag.c �3.3325 �18.3453 12.0400 33,000 1.0010

physiography X dev.c �2.6717 �21.9853 16.3453 33,000 1.0010

RIVER . . . . .

aNumber of effective samples (independent iterations) produced from the MCMC chain
bModel convergence criteria, where at convergence R-hat = 1
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Figure 3 Predicted probability of occupancy for

Cryptobranchus alleganiensis within a randomly selected 50 m

stream reach, based on the proportion of the upstream

catchment falling within the Blue Ridge physiographic province

of south-west VA, USA. Solid lines represent mean estimates

and dashed lines represent 95% credible intervals based on 1000

random samples drawn from MCMC chains.

Table 4 Extrapolated estimates of the total proportion of area

occupied (PAO) by Cryptobranchus alleganiensis throughout

fourth-order and larger streams in the New and South Fork

Holston river drainages in south-west Virginia, USA (assuming

coarse substrate is present in every 50 m reach).

Estimated

occupancy

Ψ (physiography)

Ψ (physiography 9

catchment land use)

Stream km PAO Stream km PAO

0–0.1 371.1 0.04 371.1 0.03

0.1–0.2 0 0 0 0

0.2–0.3 0.4 0.27 25.1 0.26

0.3–0.4 54.4 0.37 74.2 0.36

0.4–0.5 66.2 0.43 128.3 0.46

0.5–0.6 104.3 0.53 107.7 0.54

0.6–0.7 309.5 0.67 80.9 0.64

0.7–0.8 67.8 0.75

0.8–0.9 39.9 0.82

0.9–1.0 11.06 0.92

Total 906.1 0.36 906.1 0.34
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decreased as the proportion of a catchment that fell within

the Blue Ridge increased (Fig. 6a) and, regardless of physiog-

raphy, decreased as forest cover within the surrounding area

increased (Fig. 6b–c). Evidence of water quality variation

along a physiographic gradient (Fig. 6a) supports our specu-

lation that water quality may function as a contributing

mechanism, or strong correlate of other mechanisms, defin-

ing current hellbender distribution. However, more compre-

hensive work is needed to understand effects of land use and

physiography on water quality and to determine whether

water quality is associated with more sensitive metrics of

hellbender population viability (e.g. abundance or reproduc-

tive success).

While our results indicate that about one-third of our

study area is currently occupied by hellbenders, occurrence is

not indicative of abundance or population viability. Occur-

rence of freshwater species is often less sensitive to land use

than abundance (Utz et al., 2009, 2010), particularly over

short timescales. Therefore, we caution against assuming

probability of occupancy is an indicator of population viabil-

ity in our study. Rather, given that stream segments subject

to moderate or higher (< 65% forest) levels of human land

use intensity currently represent the majority of occupied

habitat in our study area (Fig. 5), additional research to

determine how land use influences population viability may

be particularly vital to conservation planning for hellbenders.
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Figure 4 Predicted probability of occupancy for Cryptobranchus alleganiensis within a randomly selected 50 m stream reach, based on

the proportion of the upstream catchment that occurs within the Blue Ridge physiographic province of south-west VA, USA, and is

classified as agriculture (a) or developed (b). Predictions are the result of 1000 random samples drawn from MCMC chains, where

effects of each land use type were generated while holding levels of the other category constant at the mean observed

(developed = 0.28%; agriculture = 27%).
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Figure 5 Distribution of the total area predicted to be occupied by Cryptobranchus alleganiensis across fourth-order and larger stream

reaches subject to varying levels of land use in South Fork Holston and New River drainages, VA, 2013–2014. Predictions are based on

best-performing occupancy models (light grey bars = physiography only model; dark grey bars = physiography 9 land use model). Note

that over half of the area predicted to be occupied falls within stream reaches with only moderately forested (≤ 65%) catchments, and

only 17–20% of occupied habitat occurs in reaches with heavily (> 70%) forested catchments.
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Our study highlights the potential danger of assuming that

the distribution of data-deficient species can be approxi-

mated using untested, but commonly accepted, species–habi-
tat associations. Global changes likely to influence species

distributions are occurring at an increasing rate. As a result,

it is increasingly important to understand the current and

potential future distributions for species. Our study focused

on an imperiled habitat specialist whose occurrence is often

readily assumed to correspond with current indicators of

high-quality in-stream conditions (i.e. heavily forested land-

scapes; Williams et al., 1981). Similar assumptions are likely

to exist for many imperiled freshwater species, given that

land use has the potential to alter sedimentation input, water

chemistry, channel morphology and flow regime (Allan,

2004). For our target species, however, we found current

land use to be an unreliable predictor of distribution when

physiography was ignored. Our findings are consistent with

previous studies suggesting that models informed by pres-

ence–absence (rather than presence-only) data can reduce

omission (false absence) and commission (false presence)

errors when predicting species distributions (Hermoso et al.,

2015). Omission and commission errors can lead to inaccu-

racies regarding the status of species and can reduce the effi-

ciency of conservation planning when conservation targets

include protecting discrete habitat units necessary to con-

serve a species (Hermoso et al., 2015). For many imperiled

species, there are likely be important trade-offs between the

desire for reliable data and the need to make conservation

decisions in a timely manner. We acknowledge that in some

cases the risks associated with waiting to acquire presence–
absence data may outweigh the benefits. However, when pos-

sible, we encourage randomized spatial sampling, multiple

site visits and inclusion of absence data (even when only par-

tially available; Hermoso et al., 2015) when modelling distri-

butions of species. Encouragingly, recent advances in

molecular techniques to detect freshwater species from water

samples (eDNA; reviewed by Goldberg et al., 2015) offer a

potentially powerful, more sensitive and relatively low-labour

approach to presence–absence sampling in freshwater sys-

tems. Pairing presence–absence sampling via eDNA with an

occupancy framework has great potential to improve our

knowledge of distributions of rare species. However, because

extrapolations of occupancy estimates are sensitive to the

definition of the sampling unit, such studies should carefully

consider and explicitly define the spatial unit represented by

a water sample (e.g. see Jane et al., 2015).
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Figure 6 Relationship between water quality, physiography

(a) and land use quantified at the catchment- (b) and

immediate-riparian (c) spatial scales. Points are observations

from a subset of 30 sample reaches with catchments that fell

predominantly in the Ridge and Valley (circles) or Blue Ridge

(triangles) physiographic provinces. Lines represent predicted

effects of covariates, separately for each province (solid black

lines = Ridge and Valley; dashed black lines = Blue Ridge),

based on results from a least squares regression (R2
adj = 0.557,

F1,28 = 13.15, P < 0.0001). Covariate effects were predicted while

holding other variables in the model at the mean observed

value. Note that conductivity was generally higher in Ridge and

Valley streams relative to those from the Blue Ridge (a).

Additionally, conductivity decreased as forest cover increased at

both the catchment- (b) and immediate-riparian area (c)

regardless of physiography.
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