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SUMMARY
Immune function early in life can be influenced by parental effects and the environment, but it remains unclear how these two
factors may interact to influence immunocompetence. We evaluated maternal and environmental contributions to offspring
healing ability in a viviparous reptile, the northern watersnake (Nerodia sipedon). We measured wound healing rates, a highly
integrative and biologically relevant measure of innate immunity, of females and their offspring collected from sites contaminated
with a toxic heavy metal and compared them with those of individuals from reference sites. We found that female watersnakes
that healed the fastest produced offspring that also exhibited faster healing rates. However, we detected no influence of
environmental pollution on maternal or offspring healing rates. To our knowledge, our study is the first to correlate maternal and

offspring wound healing ability in a wild vertebrate.
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INTRODUCTION

Immunocompetence is a critical determinant of individual fitness
(Graham et al., 2010) that is shaped by both parental and
environmental factors (Grindstaff et al., 2003; Lazzaro and Little,
2009). Previous studies have shown that parental effects, including
genetic and non-genetic components, and environmental effects (i.e.
resource availability, abiotic conditions, anthropogenic stressors) can
influence initial offspring immune function (Brinkhof et al., 1999;
Grindstaff et al., 2003; Rubolini et al., 2006; Polkki et al., 2012).
In a cross-fostering experiment with great tit (Parus major) nestlings,
maternal origin accounted for 15% of the variation while rearing
environment explained 31% of the variation in offspring immunity,
suggesting both parental and environmental sources can contribute
to initial immunocompetence (Brinkhof et al., 1999). However, few
studies have examined the potential repercussions of environmental
factors on offspring immunity that are mediated through parental
pathways. For example, many immunosuppressive contaminants can
be maternally transferred from a female to her offspring during
sensitive stages of development (Eisenreich et al., 2009; Bergeron
et al., 2010). Exposure to contaminants could provide a source of
variation in female and offspring immunocompetence, resulting in
adverse effects such as reduced antibody responses and impaired
T-cell function (Hawley et al., 2009; Polkki et al., 2012). Because
both parental and environmental sources can have multi-generational
effects on phenotype, it is important to understand the contribution
that each of these factors has on immunity.

We evaluated maternal and environmental contributions to
offspring healing ability in a viviparous reptile, the northern
watersnake (Nerodia sipedon Linnaeus 1758). We sought to
understand the influence of mercury (Hg), a common pollutant
thought to have immunosuppressive properties (Spalding et al.,
2000; Finkelstein et al., 2007; Hawley et al., 2009), on maternal
and offspring healing rates. We collected gravid female watersnakes

along reference river sites located in central Virginia, USA, and at
the South River, a site historically contaminated with Hg. We
measured wound healing rate, a highly integrative and biologically
relevant measure of innate immunity (Demas et al., 2011), of females
and their offspring collected from sites polluted with Hg and
compared them with those of individuals from reference sites.

MATERIALS AND METHODS

Upon capture, we measured snout-to-vent length (SVL; cm) and
mass (g), and took a small tail biopsy as an indicator of Hg
accumulation for all gravid females (Burger et al., 2005; Drewett
et al., 2013). We transported females (N=20) to the laboratory and
maintained them individually within a walk-in environmental
chamber (25°C), but provided heat lamps that allowed them to
thermoregulate naturally. Following parturition (9 August—4
September 2011), we randomly selected a single male neonate from
each litter to be used in the experiment. To assess maternal transfer
of Hg, we euthanized, lyophilized and homogenized three randomly
selected neonates per litter to be analyzed for Hg. Samples were
analyzed for total mercury at the College of William and Mary,
Williamsburg, VA [see Drewett et al. (Drewett et al., 2013) and
Chin et al. (Chin et al., 2013a) for details about snake collection,
housing and sample analysis].

We used a 4mm (adult females) or 3mm (neonates) diameter
sterile biopsy punch to administer a circular, superficial wound to
the skin of the posterior right lateral side of females 8days after
their first post-parturition shed and of neonates 14 days post-birth.
We injected a local anesthetic (2% lidocaine HCL; neonates: 10 pl,
adults: 30 ul) subcutaneously to a sterilized area prior to wounding.
Only the top layer of skin was removed by the punch and no muscle
tissue was disturbed. In some cases, a small amount of bleeding
occurred around the excised area and we applied pressure to the
area until bleeding had completely stopped. We assessed wound
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healing by photographing the wound daily using a dissecting scope
interfaced to a laptop computer. Photographs were not taken on the
day after feeding to prevent regurgitation. A single reviewer, blind
to snake identities, analyzed photographs using Micron imaging
software (Westover Scientific, Mill Creek, WA, USA) to determine
wound area (mm?). We considered wound area to be any area
encompassed by the epidermal margin, and once re-epithelialization
was complete across the entire wound area (i.e. epidermal margins
joined), the individual was considered ‘healed’. During healing, we
housed neonates individually within the environmental chamber
(25°C) in 51 plastic shoeboxes and females in 751 aquaria, both
with a paper towel substrate and a water bowl small enough to
prevent submergence [see Chin et al. (Chin et al., 2013a) for
husbandry details]. Following completion of wound healing,
neonates and adult females were released at the female’s capture
location.

We conducted all statistical analyses using SAS (version 9.2, SAS
Institute, Cary, NC, USA) and assessed significance at 0=0.05. All
data met parametric assumptions of normality and homoscedasticity.
Both SVL and body mass were included in all initial models but
were subsequently dropped due to non-significance (P>0.33). Due
to technical difficulties with the camera or shedding during the
healing phase, four individuals (two adults and two neonates,
unrelated to one another) were unable to be used in statistical
analyses, yielding final sample sizes of 18 females, 18 neonates and
16 female—offspring pairs.

We tested for differences between healing rate (mm?>day™') of
females and offspring using a generalized linear mixed model
(PROC GLIMMIX) that corrected for initial wound size. We
assessed the relationship between days to full recovery of females
and their respective offspring using a linear regression. We examined
the influence of Hg on wound healing progression (% of wound
healed over time) of females and their offspring using two repeated-
measures ANOVA models with site (contaminated versus reference)
as the main effect. Finally, we evaluated the influence of tissue Hg
concentrations on days to full recovery (wound 100% healed) for
both females (tail tissue) and neonates (whole-body tissue) using
two linear regression models.

All work was conducted in accordance with the animal care and
use committee at Virginia Tech (IACUC protocol 11-131).

RESULTS
Initial wound area averaged 12.56+0.24mm’ for adult females
(N=18) and 8.42+0.26mm?’ for neonates (N=18). Days to full
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Fig. 1. Relationship between days to full recovery of female Nerodia
sipedon and their offspring (N=16, r?=0.34, P=0.02). Litters from reference
(Ref) and contaminated (Cont) sites are indicated.
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Fig.2. Mean (+1 s.e.m.) proportion of wound healed over time for female
(A) and neonate (B) Nerodia sipedon collected from either reference (Ref)
or contaminated (Cont) sites in Virginia.

recovery varied considerably among individuals (628 days for adult
females; 4—17 days for neonates). Although mean time required to
fully heal was shorter for neonates (9.33+0.84 days) than females
(16.83+1.81days), healing rates did not differ (females:
0.95+0.12mm?day'; neonates: 1.07+0.13 mm?day; F134=0.52,
P=0.47) after correcting for differences in initial wound area. We
detected a significant positive correlation between days to full
recovery for adult females and their offspring (N=16, °=0.34,
P=0.02; Fig. 1).

Wound healing progression did not differ between sites for either
females (site: £} 17=0.46, P=0.51; time: F13406=06.31, P<0.01; site
x time: Fg 406=0.22, P=1.00; Fig.2A) or neonates (site: /' ;7=0.01,
P:0.92, time: F16,266:71~915 P<001, site X time: F16,266:0-62;
P=0.86; Fig.2B). Similarly, days to full recovery was not
significantly related to tissue Hg concentrations within demographic
groups (in both cases P>0.47).

DISCUSSION
To our knowledge, our study is the first to correlate maternal and
offspring wound healing ability in a wild vertebrate. We
demonstrated that female watersnakes that healed the fastest

THE JOURNAL OF EXPERIMENTAL BIOLOGY



produced offspring that also exhibited faster healing rates (Fig. 1).
This is consistent with prior studies that demonstrated relationships
between maternal and offspring innate, humoral and cell-mediated
responsiveness in several bird species and one lizard (Brinkhof et
al., 1999; Roulin et al., 2000; Svensson et al., 2001; Réberg et al.,
2003) using other immune assessments designed to test the
different branches of the immune system independently (Demas
etal., 2011). We also demonstrated that healing rate did not differ
between females and neonates. This is contrary to previous studies
in laboratory mammals (i.e. rodents, rabbits) that report healing
time increases with age (reviewed in Davidson, 1998). The
relatively constant rates of healing across ontogeny in watersnakes
may reflect physiological and life history characteristics of
ectothermic vertebrates.

To our knowledge, our experiment is also the first to
examine effects of pollutants on wound healing in vertebrates.
Despite the fact that individuals collected from the contaminated
site had very high tissue concentrations of Hg (female:
5.66+0.48 mgkg '; neonate: 3.11+0.26 mgkg ' dry mass) compared
with reference individuals (female: 0.36+0.08mgkg '; neonate:
0.2040.11 mgkg! drymass), we detected no effects of Hg on healing
ability of female N. sipedon or their offspring. This is contrary to
previous studies that have shown that Hg affects vertebrate immune
function (Spalding et al., 2000; Finkelstein et al., 2007; Hawley et
al., 2009). However, two recent studies found few adverse sublethal
effects of maternally transferred Hg in neonatal N. sipedon (Chin
et al., 2013a; Chin et al., 2013b), suggesting that our study species
may be more tolerant of Hg than many other species. Future studies
that examine species known to experience deleterious effects in
response to Hg exposure [e.g. Bufo americanus, Thryothorus
ludovicianus, Tachycineta bicolor and Chelydra serpentina
(Bergeron et al., 2011; Hallinger et al., 2011; Jackson et al., 2011;
Hopkins et al., 2013)] and that include larger sample sizes are needed
to clarify the effects of Hg on wound healing and other aspects of
immune function in wildlife.

It remains to be determined whether the effects that we observed
have an underlying genetic basis and/or whether non-genomic
factors (e.g. maternal effects) are influencing immunity. Previous
research demonstrated that both sources can separately contribute
to variation in offspring immunity. For example, in captive mice,
several studies have shown wound healing to be a highly heritable
trait (McBrearty et al., 1998; Li et al., 2001). Alternatively, DuRant
et al. (DuRant et al., 2012) demonstrated that the environment can
also contribute to immunity independent of genetic contributions:
ducklings incubated at sub-optimal temperatures showed a
19-21% decreased swelling response after injection with
phytohaemagglutinin. Therefore, we recommend future studies be
directed at understanding the relative contribution of parental and
environmental factors on offspring immunity.
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